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Società Italiana di Fisica
Springer-Verlag 1999

Double photoionization of rotating linear molecules

N. Chandraa and S. Sen

Department of Physics & Meteorology, Indian Institute of Technology, Kharagpur 721302, India

Received: 7 August 1998

Abstract. This communication presents a theoretical study of the angular distribution of one or both of
the two electrons emitted in one-photon, one-step double ionization of a linear molecule. Experiments
which do or do not detect spin of the photoelectrons have been considered. Effects of molecular rotation
on double photoionization have been studied in both Hund’s coupling schemes (a) and (b) by using parity-
adapted states. Selection rules obtained in this paper are very different from those derived earlier for single
photoionization and for Auger decay following the absorption of a photon in a rotating linear molecule. It
is shown that complete specification of the spin-unresolved and of spin-resolved angular distributions of
both photoelectrons require, respectively, three and seven parameters which depend, among other things,
on their energies as well as directions of emission. The approach developed in this paper has been used to
analyze spin-unresolved double photoionization in the 3σ2g shell of the N2 molecule. The angular distribution
is quite different depending on whether or not molecular rotation has been taken into account. Also, it
is found to change significantly for different rotational transitions. Effects of electron-electron correlation
are clearly manifested even in non-coincident, both rotationally resolved—as well as unresolved—double
photoionization.

PACS. 33.60.Cv Ultraviolet and vacuum ultraviolet photoelectron spectra – 33.80.Eh Autoionization,
photoionization, and photodetachment – 33.90.+h Other topics in molecular properties and interactions
with photons

1 Introduction

Recently developed high-resolution, angle-resolving elec-
tron spectrometers are successfully being used [1] to mea-
sure photocurrents arising from the production of di-
atomic ions in different rotational states of H+

2 , N
+
2 , NO

+,
O+
2 , etc., which have relatively large rotational constants.

These spectrometers have been combined with Mott de-
tectors [2] to study experimentally [3,4], and also theoreti-
cally [5], the effects of nuclear rotation on spin polarization
of photoelectrons emitted from as heavy a molecule as HI.

Ejection of two electrons following the absorption of
a single photon in an atom or molecule is the most di-
rect manifestation of electron-electron correlation. The
two photoelectrons ejected simultaneously in a single step
(i.e., in double photoionization) share between themselves
not only the energy of the absorbed photon in excess to
the ionization potential, but also the spin-orbit interac-
tion (SOI) present in the continuum of each of the ejected
electrons [6]. Since the pioneering work of Byron and
Jochain [7], there have been several studies [8] of double
photoionization (DPI) in atomic targets. The investiga-
tions on DPI of gaseous molecules, on the other hand, are
beginning to emerge [9–11]. But none of those [9–11] com-
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munications either takes rotation of the molecular nuclei
into account or analyzes spin of the ejected electrons.
Motivated by the increasing emphasis on high-resolu-

tion molecular spectroscopy with photoelectrons [1] and
the importance of studying electron-electron correlation
in both atoms [8] as well as in molecules [9–11], we present
in this paper probably the first theoretical study of rota-
tional state-to-state transition in DPI of linear molecules
in electric dipole (E1) approximation. The molecular ro-
tation has been considered in each of Hund’s coupling
schemes [12,13] (a) and (b) by us. Also, in order to take the
symmetry properties of the target properly into account,
we have represented the neutral molecular target as well
as its doubly charged residual photoion by wave functions
of definite parities [13,14]. The use of such parity-adapted
states [13,14] determines selection rules for rotationally
resolved DPI in E1 approximation in linear molecules. Al-
though the formal structure of the expressions developed
by us separately for Hund’s schemes (a) and (b) is iden-
tical, they however have different dynamical terms and,
of course, obey different selection rules. In the next Sec-
tion 2, we derive an angular correlation function for spin-
unresolved photocurrent produced in the DPI of a rotating
linear molecule.
In order to perform a “complete” [15] DPI experiment,

it is necessary that the initial reactants (in the present
case, molecule AB plus the radiation field) should be in
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a selected state and the internal properties of the reac-
tion products (i.e., AB++ and the two photoelectrons) be
analyzed. Thus a proper study of electron-electron cor-
relation in DPI requires that the spin polarization of the
two photoelectrons should also be observed, in addition to
analysing their energies and angular distributions. Such
spin-resolved investigations will constitute also one step
forward in the direction of making a “complete” [15] ex-
periment on DPI. But, unfortunately, it is extremely dif-
ficult to measure spin polarization of electrons. The main
reason for this difficulty is that there is a significant loss
(approximately by a factor of 1000 (Ref. [2])) of inten-
sity in a Mott detector used to observe the direction of
quantization of the spin of a photoelectron. Consequently,
it is probably beyond the reach of the presently existing
experimental facilities to measure spin polarization of elec-
trons ejected in DPI. However, probable non-feasibility of
angle- and spin-resolved DPI experiments in the near fu-
ture should not deter one from studying such processes,
at least theoretically, even at present. This observation is
significant for several reasons.

Firstly, rotationally resolved spin polarization of elec-
trons ejected in an E1 process from a gas phase diatomic
molecule has already been measured successfully in sev-
eral experiments [3,4] on single photoionization. Secondly,
recent investigations have shown that the fragmentation
patterns characterized by the energy partitioning, angu-
lar distribution, and spin polarization of photoelectrons
and of Auger electrons ejected in double ionization of
atoms [16,17] and of molecules [17–19] are much more
complicated than those in which spins of the two outgo-
ing electrons are not detected. Similarly, a recent theo-
retical study [6] of spin-resolved DPI of Yb has shown
that the two ejected electrons share not only the energy
of the absorbed photon in excess to the ionization poten-
tial, but also the SOI present in the continuum of each of
the two photoelectrons, in addition to experiencing mu-
tual Coulomb repulsion. Moreover, such angle- and spin-
resolved studies of photoelectron-Auger electron coinci-
dence and of DPI spectroscopy of both atomic as well
as molecular targets should provide natural experimental
tests for Bell’s theorem [20,21] and a basis for its proposed
practical application [22] in quantum cryptography. Thus,
those DPI studies in both atoms and molecules which in-
clude an analysis of the spin polarization of two ejected
electrons are not only a richer source of information on
structure and dynamics of the target as well as on its
electron-electron correlation, but also provide natural test
for some of the fundamental aspects [20,21] of quantum
mechanics and potential applications in a new and emerg-
ing field of quantum computation [23].

In Section 3 of this paper, we therefore derive an ex-
pression for studying correlation between angle- and spin-
resolved photoelectrons ejected in DPI of a rotating linear
molecule AB. The molecular rotation, even in Section 3,
has been represented by parity-adapted states in Hund’s
coupling scheme (a) as well as (b). The correlation func-
tions obtained in Sections 2 and 3 are, of course, quite
different from each other.

The theories developed in this paper are used to study
in Section 4 the angular distribution of spin-unresolved
electrons ejected from 3σ2g shell of N2 in its DPI in Hund’s
case (b). This application brings out most of the aspects
of our theoretical formulation. It clearly demonstrates as
to how the simultaneous ejection of a second electron
changes, due to correlation effects, the angular distribu-
tion of the observed electron even in a non-coincident DPI
experiment and the strong dependence of this distribution
on the rotational states of N2, N

++
2 involved in a transi-

tion. The conclusions of this paper are contained in the
last Section 5.

2 Angular correlation between spin-unresolved
photoelectrons ejected in DPI

Let us consider the following process:

hνr(|lr| = 1,mr) +AB(J0M0p0)→

AB++(JfMfpf) + e1(µ1û1k1) + e2(µ2û2k2) (1)

in a rotating linear molecule AB which belongs to one of
the two point groups [13] C∞v or D∞h. Here |lr| = 1 and
Er = hνr are, respectively, the angular momentum in E1
approximation and energy of the absorbed photon. The
parameter mr in equation (1) and elsewhere in this paper
specifies the state of polarization of the electromagnetic
radiation: mr = 0 for linear polarization (LP), mr = +1
for right circular polarization (RCP), and mr = −1 for
left circular polarization (LCP). An even mixture of RCP
and LCP beams of photons is considered to be unpolarized
(UP). The electromagnetic wave also defines the so-called
space (or photon) frame of reference OXYZ with its origin
O at the center of mass of the target molecule. The polar
OZ-axis of this frame is the space quantization direction
and is taken to be along the electric vector of the LP light.
A RCP, LCP or UP beam, on the other hand, is incident
in the direction of the OZ-axis.
Further in (1), |J0M0p0〉 and |JfMfpf 〉 are the bound

electronic states of AB with energy E0 and of the doubly
charged residual photoion AB++ possessing energy Ef ,
respectively. M0 and Mf are the respective projections
along the space quantization axis of the total angular mo-
mentum J0 of AB and Jf of AB

++; |J0M0p0〉 state has
parity p0 [14], while pf is that of state |JfMfpf 〉.

Further in equation (1), k1[k1, k̂1(θ1, φ1)] and k2[k2,

k̂2(θ2, φ2)] are the propagation vectors of the photoelec-
trons e1 and e2, respectively. These two electrons are
ejected simultaneously with respective energies ε1 =
~
2k21/2m and ε2 = ~

2k22/2m. We, therefore, have ε1+ε2 =
hνr− (Ef −E0) from energy conservation. Projections µ1
and µ2 (with µ1, µ2 = ±

1
2 ) of the spin angular momenta

of e1 and e2 ejected in the DPI (1) are taken to be in the
directions û1(θ

′
1, φ

′
1) and û2(θ

′
2, φ

′
2), respectively. Each of

the two vectors (k1, û1) for e1 and (k2, û2) for e2, used in
this paper, have been defined with respect to the space
frame OXYZ.
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The angular distribution of two spin-unresolved pho-
toelectrons e1 and e2 ejected simultaneously in the pro-
cess (1), is given by

d3σ(mr)

dε1dk̂1dk̂2
=

K

2J0 + 1

×
∑

M0Mf

µ1µ2

|〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉|
2. (2)

Here, K = 3π(e2/α0Er)
2 with α0 the dimensionless fine-

structure constant. Expression (2) has been averaged over
M0 and summed over Mf . The two additional sums over
µ1 and µ2 mean that the expression (2) is for that DPI
process (1) in which spins of the photoelectrons e1 and e2
are not observed. Further in (2), Fp = (m/~

2)F , where F
is the photoionization operator taken from equations (7)
and (8) in reference [24] in E1 length and velocity approx-
imations, respectively. The definitions of the operator F
and of the constant K used in equation (2) are in accord
with Bethe and Salpeter [25] such that the expression (2),

after the angular integration over k̂1 and k̂2, gives the in-
tegrated cross-section for DPI (1) in cm2.
For further use in this paper, we need to expand the

space frame photon state |1mr〉, present in (2), in terms
of the molecule frame states |1λr〉 by the relation [26]

|1mr〉 =
∑
λr

D1
λrmr(ω)|1λr〉 . (3)

Here, D’s are the rotational harmonics [26] with their ar-
gument ω(≡ αβγ) containing three Euler angles. The suc-
cessive rotations by the angles γ, β, and α bring [26] the
space frame in coincidence with the molecule frame. The
latter, although concentric with the OXYZ coordinate sys-
tem, has its polar axis along the molecular axis which, in
the case of a linear molecule, is the line joining all the
nuclei of AB.

2.1 Hund’s coupling scheme (a)

2.1.1 Photoionization matrix elements

In this case, the spin-orbit coupling is strong enough so
that the spin angular momentum is quantized along the
molecular axis. The parity-adapted state for the molecule
AB in the case (a) is given by [13,14].

|J0M0p0〉=
1
√
2

(
|n0Λ0〉|J0Ω0M0〉|S0Σ0〉

+(−1)p0 |n0 − Λ0〉|J0 −Ω0M0〉|S0 −Σ0〉
)
.(4)

In this expression, Λ0 and Σ0 are the respective projec-
tions of the electronic orbital and spin (S0) angular mo-
menta along the molecular axis. Their sumΩ0 = Λ0+Σ0 is
also a good quantum number in the case (a) of Hund’s cou-
pling. The letter n0 stands for all those additional quan-
tum numbers needed to specify the electronic state |n0Λ0〉

of AB. |S0Σ0〉 is the spin state and

〈ω|J0Ω0M0〉 =

√
2J0 + 1

8π2
DJ0

Ω0M0
(ω) (5)

is the normalized rotational state of the molecular tar-
get in the process (1). Replacement of the subscript “0”
by “f” will render the states (4) and (5) for the residual
photoion AB++.
The spin-orbital for the photoelectron e1 ejected in the

DPI (1) is given by [19,27]

|µ1û1k1〉 =

√
~2

m

∑
l1m1n1
λ1ν1

il1e−iσl1ν1Dl1
m1n1(ω)Y

n1∗
l1

(k̂1)

×D
1
2∗
µ1λ1

(ω1)D
1
2

ν1λ1
(ω)F−l1m1ν1 . (6)

Here, the space part F−l1m1ν1 satisfies the appropriate in-
coming wave boundary conditions [28] and also depends
upon the spin variable ν1 to take the SOI in the contin-
uum properly into account. A rotation by the Euler an-
gles ω1(≡ φ′1, θ

′
1, 0) brings the photon frame in coincidence

with the direction û1 along which the spin of the photo-
electron e1 is quantized in space. A spin-orbital |µ2û2k2〉,
similar to (6), can be written also for the photoelectron e2.
The total system of (AB+++ e1+ e2) is now described by

|JfMfpf ;µ1û1k1;µ2û2k2〉 ≡ |JfMfpf〉|µ1û1k1〉|µ2û2k2〉.
(7)

This and all other molecular states used in the present
communication are properly antisymmetrized.
We now substitute kets (3), (4), and (7) in the E1

photonization matrix element

〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉 .

It then becomes an algebraic sum of four terms each of
which contains, among other things, an integral over the
product of seven rotational harmonics of the type DJf∗

Dl1∗ Dl2∗ D
1
2∗ D

1
2∗ DJ0 D1 with Euler angles ω as their ar-

guments. This integral can be evaluated in many ways. We
will, however, like to solve it in this section of the present
communication in a manner so that we are able to intro-
duce the angular momentum lt transferred between the
absorbed photon and two photoelectrons observed with-
out their spins. Our procedure is an adaptation to DPI
of the coupling scheme originally proposed by Dill and
Fano [29] for spin-unresolved single photoionization. The
total angular momentum in the present case is

JT = lr + J0 = Jf + (l1 + s1) + (l2 + s2) . (8)

Here, l1 and s1 are the respective orbital and spin angu-
lar momenta of the photoelectron e1, while l2 and s2 are
those of the photoelectron e2. Consequently, the angular
momentum transferred is now given by

lt = lr − lp = Jp − J0 , (9a)
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where

Jp = Jf + sp , (9b)

with the respective

lp = l1 + l2 (9c)

and

sp = s1

(
=
1

2

)
+ s2

(
=
1

2

)
(9d)

the total orbital and spin augular momenta of the two
electrons emitted in DPI (1).
In order to introduce lt of equation (9a) in the present

context, we first combine D
1
2∗ D

1
2∗ using the Clebsch-

Gordan series [26] in 3-j symbols. The resulting expres-
sion is then coupled with DJf∗. The outcome of these two
operations is then combined with DJ0 . Among the three
remaining rotational harmonics, the combination of Dl1∗

Dl2∗ is coupled with D1. This procedure will eventually
reduce the original product of seven D-functions into a
sum of products of ten 3-j symbols and two rotational
harmonics. The integral over ω is now readily performed
using the orthogonality [26] of D-functions.
A similar procedure is used to evaluate the integrals

over the D-functions contained in the three remaining
terms present in the photoionization matrix element. Fur-
ther simplifications yield

see equation (10) next page

Here

see equation (11a) next page

is the reduced matrix element with

see equation (11b) next page

Here we have defined

see equation (12) next page

which includes the definitions

|n0Λ0〉|J0Ω0M0〉|S0Σ0〉|1λr〉 ≡

|n0Λ0Σ0Ω0p0; 1λr〉|J0Ω0M0〉

and

|nfΛf〉|JfΩfMf〉|SfΣf 〉F
−
l1m1ν1

F−l2m2ν2 ≡

|nfΛfΣfΩf ; l1m1ν1; l2m2ν2〉|JfΩfMf 〉.

The form (10) of the photoionization matrix element has
been arrived at by using the property

〈nf ,−Λf , Sf ,−Σf ,−Ωf ; l1,−m1,−ν1; l2,−m2, −ν2

|F |n0,−Λ0, S0,−Σ0,−Ω0; 1,−λr〉 =

〈nfΛfSfΣfΩf ; l1,m1, ν1; l2m2ν2|F |n0Λ0S0Σ0Ω0; 1λr〉

applicable to linear molecules in Hund’s case (a). The
bracket expressions on the right-hand side of (12) are the
matrix elements of the E1 operator. Their evaluation re-
quires integration over the space and spin variables of all
electrons involved in DPI.

2.1.2 Selection rules

In order to obtain selection rules for the DPI pro-
cess (1) in the present case (a), let us analyse expres-
sions (10) and (11) in terms of the allowed angular mo-
menta and their projections. The 3-j symbols present
in (11b) and (12) will vanish unless

Ωf ±Ω0 = λr − (m1 + ν1)− (m2 + ν2) . (13a)

That is, the sum or the difference of the projections of
the total angular momenta of AB and of AB++ along
the molecular axis should be equal to the difference of
the projections of the angular momentum of photon and
of the orbital as well as spin angular momenta of e1 and
e2. This, in fact, is the well-known selection rule appli-
cable to bound-bound transitions in the spectroscopy of
linear molecules [12,13]. The possible rotational states of
the doubly charged photoionAB++ which can be accessed
in the DPI process (1) in an E1 approximation are given
by the rule

|J0 − 1| ≤ JT ≤ J0 + 1 . (13b)

Here, JT has been defined by the equation (8).
The following important selection rule

l1 + l2 + J0 − Jf + p0 + pf = even (13c)

is obtained from the expression enclosed in the curly
brackets in (12). This rule is very different from those
obtained earlier for rotationally resolved state-to-state
transitions in single photoionization [5,14,19,27,30] or in
Auger spectroscopy [19,27] of linear molecules. According
to (13c) for fixed parities p0 of AB and pf of AB

++ as well
as for their rotational states J0 and Jf , respectively, the
pair of electrons escaping in DPI (1) too possesses a def-
inite parity (−1)l1+l2 . But neither of the photoelectrons
can itself be assumed to have a definite parity. On the
other hand, many pairs of l1 + l2 may contribute to the
two-electron continuum state such that l1+ l2 is always ei-
ther even or odd (i.e., l1 and l2 have the same or opposite
parities) for a given (J0, p0) → (Jf , pf) transition in (1).
This property is similar to that which exists [6] in DPI of
atomic targets where both the initial target and the final
photoion are usually in a parity eigenstate.
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〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉
(a) = (−1)Ω−Ω0−M0−M

√
2J0 + 1

∑
l1l2lp
n1n2np

∑
λ1λ2
spλp

∑
JpNp
ltnt

(−1)1+Jp−2λp

×(2lt + 1)
√
(2sp + 1)(2Jp + 1)[(2l1 + 1)(2l2 + 1)]

− 12

(
1
2

1
2 sp

−λ1 −λ2 λp

)(
Jf sp Jp

−Mf −λp −Np

)(
Jp J0 lt

Np −M0 −nt

)

×

(
l1 l2 lp
−n1 −n2 np

)(
1 lp lt
mr −np nt

)
Y n1
l1
(k̂1)Y

n2
l2
(k̂2)D

1
2

µ1,λ1
(ω1)D

1
2

µ2,λ2
(ω2)〈Jfpf ; (l1l2)lp; sp;Jp|F (lt)|J0p0; 1〉

(a). (10)

〈Jfpf ; (l1l2)lp; sp;Jp|F (lt)|J0p0; 1〉
(a) = (−i)l1+l2ei(σl1ν1+σl2ν2)

×(2lp + 1)
√
(2l1 + 1)(2l2 + 1)(2sp + 1)(2Jf + 1)(2Jp + 1)

∑
JT

(2JT + 1)

{
1 J0 JT
Jp lp lt

}

×〈nfΛfΣfΩfpf ; (l1l2)lp; (Jfsp)Jp|F (JT )|n0Λ0Σ0Ω0p0; 1〉 (11a)

〈nfΛfΣfΩfpf ; (l1l2)lp; (Jfsp)Jp|F (JT )|n0Λ0Σ0Ω0po; 1〉 =∑
m1m2mp
ν1ν2νpMp

(−1)Mp

(
l1 l2 lp
−m1 −m2 mp

)(
1
2

1
2 sp

−ν1 −ν2 νp

)(
Jf sp Jp
−Ωf −νp Mp

)(
lp Jp JT
mp Mp MT

)

×〈nfΛfΣfΩfpf ; l1m1ν1; l2m2ν2|F (JT )|n0Λ0Σ0Ω0p0; 1〉 . (11b)

〈nfΛfΣfΩfpf ; l1m1ν1; l2m2ν2|F (JT )|n0Λ0Σ0Ω0p0; 1〉 ≡
1

2
{1 + (−1)l1+l2+J0−Jf+p0+pf }

∑
λr

(−1)λr

×

[(
J0 1 JT
Ω0 λr MT

)
〈nfΛfΣfΩfpf ; l1m1ν1; l2m2ν2|F |n0Λ0Σ0Ω0p0; 1λr〉+ (−1)

p0+2Ω0

×

(
J0 1 JT
−Ω0 λr MT

)
〈nfΛfΣfΩfpf ; l1m1ν1; l2m2ν2|F |n0 − Λ0 −Σ0 −Ω0; 1λr〉

]
, (12)

2.1.3 Differential cross-section

We next substitute the photoionization matrix ele-
ment (10) in the expression (2) for angular distribution.
Sums over (µ1, µ2) and (M0, Mf ) can be analytically
performed by using unitarity [26] of rotational harmon-
ics and of 3-j symbols, respectively. After some additional
simplifications, the final expression for rotationally re-
solved angular distribution of spin-unresolved photoelec-
trons ejected in the DPI (1) of a linear molecule in Hund’s
coupling scheme (a) can be written as

d3σ(mr)

dε1dk̂1dk̂2
=
∑
l1l2lp
l′1l
′
2l
′
p

∑
spJplt

G(1mr; (l1l2)lp; (l
′
1l
′
2)l
′
p; lt; k̂1; k̂2)

×〈Jfpf ; (l1l2)lp; sp;Jp|F (lt)|J0p0; 1〉
(a)

×〈Jfpf ; (l
′
1l
′
2)l
′
p; sp;Jp|F (lt)|J0p0; 1〉

(a)∗ . (14)

Here

G(1mr; (l1l2)lp; (l
′
1l
′
2)l
′
p; lt; k̂1, k̂2) =

(−1)l1+l2+l′p+lt+mr
K

4π
(2lt + 1)

(
1 1 Lr

mr −mr 0

)

×

{
1 1 Lr

lp l
′
p lt

} ∑
L1L2
Lr

(−1)Lr
√
(2L1 + 1)(2L2 + 1)(2Lr + 1)

×

(
l1 l
′
1 L1

0 0 0

)(
l2 l
′
2 L2

0 0 0

)

l1 l
′
1 L1

l2 l
′
2 L2

lp l
′
p Lr


YL1L2

Lr0
(k̂1; k̂2) (15)

is the geometrical factor containing the bipolar harmon-
ics [31]

YA1A2
Bb (r̂1, r̂2) = (−1)

A1−A2−b
√
2B + 1

×
∑
a1a2

(
A1 A2 B
a1 a2 −b

)
Y a1
A1
(r̂1)Y

a2
A2
(r̂2). (16)
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Thus in our final expression (14) for the triply differ-
ential cross-section for DPI in Hund’s coupling scheme
(a), the dynamical and geometrical factors are completely
separated. The former are obtained from equations (11),
whereas the latter is given by equation (15).

2.2 Hund’s coupling scheme (b)

2.2.1 Photoionisation matrix elements

Let us consider the case when the spin-orbit coupling is
weak. In this so called Hund’s scheme (b) [12,13], the spin
angular momentum of a molecule is quantized along the
polar axis of the space frame. The parity-adapted Hund’s
case (b) state for AB is given by [13,14]

|J0M0p0〉 = (−1)
−N0+S0−M0

√
(2J0 + 1)/2

×
∑

MN0MS0

(
N0 S0 J0
MN0 MS0 −M0

)

×[|n0Λ0〉|N0Λ0MN0〉+ (−1)
p0 |n0 − Λ0〉

×|N0 − Λ0MN0〉]|S0MS0〉 . (17)

In this expression, N0 is the sum of the electron’s or-
bital and nuclear rotational angular momenta with pro-
jections Λ0 and MN0 along the polar axes of the molecule
and of the space frame, respectively. In the present case,
|N0Λ0MN0〉 represents the nuclear rotational state (5). In
Hund’s scheme (b), |S0MS0〉 is the spin state of AB with
MS0 the projection of S0 along the space-fixed quantiza-
tion axis. It is obvious that the state (17) includes spin-
rotation interaction. An expression similar to (17) can be
written also for the state |JfMfpf〉 of AB++ by replacing
the subscript “0” with “f”.
In the present coupling scheme of Hund, there will not

be any SOI in the continuum as well. Consequently, the
spin-orbital of the photoelectron e1 ejected in the DPI
process (1) is given by [19,27]

|µ1û1k1〉 =

√
~2

m

∑
l1m1
n1λ1

il1e−iσl1

×Dl1
m1n1(ω)D

1
2∗
µ1λ1

(ω1)Y
n1∗
l1

(k̂1)| 12λ1〉F
−
l1m1

. (18)

Thus, unlike in the spin-orbital (6) for the photoelectron
in Hund’s case (a), neither the Coulomb phase σl1 nor the
space part F−l1m1 in (18) depend upon the spin variable.

Further in (18), |12λ1〉 is the spin state of the photoelectron
e1 quantized along the polar axis of the space frame. One
can similarly write the spin-orbital for the second electron
e2 ejected in the DPI in Hund’s case (b).
The state which represents the total (AB+++ e1+ e2)

system in the scheme (b) of Hund can be written in the
following form:

see equation (19) next page

It is obtained by coupling the vector sum sp = s1+s2 of the
spin angular momenta of e1 and e2 to that of AB

++. Here,
we have defined |nfΛf〉F

−
l1m1

F−l2m2 ≡ |nfΛf ; l1m1; l2m2〉,
and so on.
The photoionization matrix element needed in (2) is

calculated using the states (17) and (19) along with the
function (5) for the nuclear states in case (b). The E1
matrix element then becomes an algebraic sum of four
terms. Each of these terms contains, among other things,
an integral over ω involving the product DN∗f Dl∗1 Dl∗2

D1 DN0 of five rotational harmonics. In order to intro-
duce the angular momentum transfer lt defined by equa-
tions (9) in the present coupling scheme, we couple, using

the standard methods [26], D1 (Dl∗1 Dl∗2 ) and DN∗f DN0 .
The integrand of the product of five rotational harmon-
ics is thus converted into sums of the products of six 3-j
symbols and two rotational harmonics. After some more
simplifications, performed using the identities from Racah
algebra [26,31], one finds

see equation (20) next page

Here we have defined

see equation (21) next page

with

see equation (22) next page

The form (20) of the photoionization matrix element
has been arrived at by using the property

〈nf ,−Λf ; l1,−m1; l2,−m2|F |n0,−Λ0; 1,−λr〉 =

〈nfΛf ; l1m1; l2m2|F |n0Λ0; 1, λr〉

applicable to linear molecules in the scheme (b) of Hund.
The bracketed expressions on the right-hand side of (22)
are the matrix elements of the E1 operator. Their evalu-
ation requires integration only over the space variables of
all electrons involved in the DPI (1).

2.2.2 Selection rules

The selection rules applicable to rotationally resolved
DPI of a linear molecule in the present Hund’s scheme
are somewhat different from those obtained in the Sec-
tion 2.1.2 for the case (a). For example, for the right-hand
side of (22) not to vanish identically, the projection of the
various angular momenta along the molecular axis now
have to satisfy either of the following conditions:

Λf ± Λ0 = λr −m1 −m2 . (23a)
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|JfMfpf ;µ1û1k1;µ2û2k2〉 =
~
2

m

∑
MNf

MSf

spλp
STMST

∑
l1m1n1λ1
l2m2n2λ2

il1+l2e−i(σl1+σl2 )(−1)Nf+sp−MNf
−2MST

×
√
(2sp + 1)(2ST + 1)(2Jf + 1)/2

(
Nf Sf Jf

MNf MSf −Mf

)(
1
2

1
2 sp

λ1 λ2 −λp

)(
Sf sp ST

MSf λp −MST

)

×Dl1
m1n1

(ω)Dl2
m2n2

(ω)D
1
2∗
µ1λ1

(ω1)D
1
2 ∗
µ2λ2

(ω2)Y
n1∗
l1

(k̂1)Y
n2∗
l2

(k̂2)|STMST 〉

×[|nfΛf ; l1m1; l2m2〉|NfΛfMNf 〉+ (−1)
pf |nf − Λf ; l1m1; l2m2〉|Nf − ΛfMNf 〉] . (19)

〈JfMfkf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉 = (−1)
Nf−S0−Sf−M0+Λ0

√
2J0 + 1

×
∑

l1n1λ1
l2n2λ2

∑
lpnp
spλp

∑
ltmt
JpNp

(−1)λp+Np−Jp(2lt + 1)
√
(2sp + 1)(2Jp + 1)[(2l1 + 1)(2l2 + 1)]

− 12

×

(
l1 l2 lp

−n1 −n2 np

)(
1
2

1
2 sp

λ1 λ2 −λp

)(
1 lp lt

mr −np mt

)(
Jf sp Jp

Mf λp Np

)(
Jf J0 lt

Np M0 −mt

)

×D
1
2

µ1,λ1
(ω1)D

1
2

µ2,λ2
(ω2)Y

n1
l1
(k̂1)Y

n2
l2
(k̂2)〈Jfpf ; (l1l2)lp; sp;Jp|R(lt)|J0p0; 1〉

(b) . (20)

〈Jfpf ; (l1l2)lp; sp;Jp | F (lt) |J0p0; 1〉
(b) =

(−i)l1+l2ei(σl1+σl2 )(2lp + 1)

×
√
(2l1 + 1)(2l2 + 1)(2Jp + 1)(2N0 + 1)(2S0 + 1)(2Nf + 1)(2Jf + 1)

×

{
Jf sp Jp
S0 Nf Sf

}{
Jp J0 lt
N0 Nf S0

}
〈nfNfΛfpf ; (l1l2)lp|F (lt)|n0N0Λ0p0; 1〉

(b) (21)

〈nfNfΛfpf ; (l1l2)lp|F (lt)|n0N0Λ0p0; 1〉
(b) =

1

2
{1− (−1)l1+l2+N0+Nf+p0+pf }

×
∑

m1m2mp
λrmt

(
l1 l2 lp
−m1 −m2 mp

)(
1 lp lt
λr −mp mt

)[(
Nf N0 lt
Λf −Λ0 mt

)
〈nfΛf ; l1m1; l2m2|F |n0Λ0; 1λr〉+ (−1)

p0

×

(
Nf N0 lt
Λf Λ0 mt

)
〈nfΛf ; l1m1; l2m2|F |n0 − Λ0; 1λr〉

]
. (22)

The rotational states in which AB++ can be found after
DPI (1) in E1 approximation, are given by

|N0 − lt| ≤ Nf ≤ N0 + lt , (23b)

where lt is defined by equation (9a).
Yet another important selection rule

l1 + l2 +N0 +Nf + p0 + pf = odd (23c)

is the condition so that the matrix element (22) does not
trivially vanish. This selection rule is naturally different

from those obtained earlier for single photoionization [19,
27,30] and for photon-induced Auger decay [19,27] of a
linear molecule rotating according to Hund’s scheme (b).
However, similar to Hund’s case (a) selection rule (13c), we
again find from (23c) that neither of the electrons e1 and
e2 escaping in DPI can be assumed to possess a definite
parity. Instead, their combined parity (−1)l1+l2 is fixed
for a given set of the quantum numbers (N0, Nf , p0, pf).
Many pairs of l1+ l2 with the same parity may contribute
to DPI.
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2.2.3 Differential cross-section

One can now readily obtain an expression for the triply
differential cross-section for DPI in Hund’s case (b) by
substituting the matrix element (20) in (2) and analyti-
cally performing the sums over (µ1, µ2) and (M0,Mf) us-
ing Racah algebra. The final result can be written in the
following form:

d3σ(mr)

dε1dk̂1dk̂2
=
∑
l1l2lp
l′1l
′
2l
′
p

∑
spJp
lt

G(1mr; (l1l2)lp; (l
′
1l
′
2)l
′
p; lt; k̂1; k̂2)

×〈Jfpf ; (l1l2)lp; sp;Jp|F (lt)|J0p0; 1〉
(b)

×〈Jfpf ; (l
′
1l
′
2)lp; sp, Jp|F (lt)J0p0; 1〉

(b)∗ . (24)

Here the geometrical factor is given by equation (15).
Thus we have again been able to separate the geometrical
and dynamical terms. Moreover the form of the angular
distribution (24) is exactly the same as derived in equa-
tion (14) in Hund’s scheme (a). But the dynamical ampli-
tudes present in (24) are, of course, different from those
used in (14). While the latter are given by equation (11),
the former are obtained from (21).

2.3 Analysis of the angular distribution

Two differential cross-sections (14) and (24) obtained in
Hund’s cases (a) and (b), respectively, can be described
by a single following expression:

d3σ(mr)

dε1dk̂1dk̂2
=
∑
l1l2lp
l′1l
′
2l
′
p

∑
spJp
lt

G(1mr; (l1l2)lp; (l
′
1l
′
2)l
′
p; lt; k̂1; k̂2)

×d(l1l2)lp(sp;Jp; lt)d
∗
(l′1l

′
2)l
′
p
(sp;Jp; lt) . (25)

Here, the dynamical amplitude

d(l1l2)lp(sp;Jp; lt)≡〈Jfpf ; (l1l2)lp; sp;Jp|F (lt)|J0p0;1〉 (26)

is obtained from the relations (11) for the scheme (a) and
from (21) for the scheme (b) of Hund. This unification of
DPI in two of the four Hund’s coupling schemes means
that in cases (a) and (b) it can be treated on the same
footing. The following analysis is therefore applicable to
the DPI of a linear molecule rotating in either of these two
coupling schemes.
It is obvious from the respective equations (9c) and

(9d) that each of both lp and sp is always integer; the
last of these two can be 0 and 1. For an E1 transition
|lr| = 1 in equation (9a). These things, in turn, mean that
the quantum numbers J0 and Jf in equations (8) and (9a)
are simultaneously either integers or half-integers. That is
|Jf − J0| = integer. Hence in a rotationally resolved DPI
experiment in a linear molecule only those transitions are
allowed in which J0 of AB changes by an integral amount.
Furthermore, each of the rotational quantum numbers

J0 and Jf has a finite value. This means, Jp in (9b) is

also finite with values Jf , Jf ±1. That is, the angular mo-
mentum transfer lt in (9a) too is finite, implying that lp in
that equation can take only a finite set of integral values as
well. But l1 and l2 in (9c) can have only integral values sat-
isfying the inequality |l1− l2|≤ lp≤ l1+ l2 and the require-
ment imposed by the selection rule either (13c) or (23c)
for Hund’s case (a) or (b), respectively. This means that,
although for each pair of (l1, l2) up to three bipolar har-
monics Lr = 0–2 may only contribute to the geometrical
factor (15), both l1 and l2 can have a large number of val-
ues of same or different parities subject to the condition
that l1 + l2 is always either even or odd.
Expression (25) for the triply differential cross-section

contains an incoherent sum over the angular momentum
transfer lt defined in equation (9a). It can therefore be an-
alyzed according to the parity-favoured and -unfavoured
transitions [29]. In the present case of DPI, these transi-
tions are respectively characterized by +1 and −1 values
of (−1)1+lt−lp . From equation (9a), lt = lp, lp ± 1. There-
fore lt = lp ± 1 correspond to parity-favoured transitions;
whereas lt = lp are parity-unfavoured transitions. For each
pair of (l1+l2), there are 2min (l1, l2)+1 unfavoured tran-
sitions, whereas the total number of favoured transitions
is one if l1 and l2 are both zero, two if either l1 or l2 is
zero, more than two if neither l1 nor l2 is zero. In the case
of single photoionization, on the other hand, there will
only be one (lt = l) parity-unfavoured and two (lt = l± 1
if l �= 0) parity-favoured transitions, respectively, if the
ejected electron is represented by the l-th partial wave.
Thus, the presence of two, rather than of one, photoelec-
trons in continuum in DPI may considerably increase the
number of both parity-favoured as well as of -unfavoured
transitions. The parity-unfavoured transitions are known
to reflect the influence of electron-photoion final-state in-
teraction and have already been observed by Langer et
al. [32] in the non-resonant single photoionization of the
argon atom.
The triply differential cross-section (25) for DPI of

a rotating linear molecule has a complicated structure.
Several attempts [33] have been made to characterize an
equivalent expression for the angular photocurrent ejected
in atomic DPI by a finite number of parameters. In this pa-
per we show that the distribution (25) can be completely
determined just by three parameters in the following form:

d3σ(mr)

dε1dk̂1dk̂2
= A0(J0p0;Jfpf ;k1;k2)

+
1

2
mrA1(J0p0;Jfpf ;k1;k2)

+
1

2
(2− 3m2

r)A2(J0p0;Jfpf ;k1;k2) (27)

with

A0(J0p0;Jfpf ;k1;k2)=
K

3(4π)2

∑
l1l
′
1

l2l
′
2

∑
lpL

spJplt

(−1)lp+L1(2lt + 1)

×(2L+ 1)(2lp + 1)
−1

(
l1 l
′
1 L

0 0 0

)(
l2 l
′
2 L

0 0 0

){
l1 l
′
1 L

l′2 l2 L

}
×PL(k̂1 · k̂2)d(l1l2)lp(sp;Jp; lt)d

∗
(l′1l

′
2)lp
(sp;Jp; lt) , (28a)
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A1(J0p0;Jfpf ;k1;k2) =
K

2π
√
2

×
∑
l1l
′
1

l2l
′
2

∑
lpl
′
p

splt

∑
L1L2
Jp

(−1)l1+l2+lt+l′p(2lt +1)
√
(2L1+1)(2L2 + 1)

×

(
l1 l
′
1 L1

0 0 0

)(
l2 l
′
2 L2

0 0 0

){
1 1 1
lp l
′
p lt

}

l1 l
′
1 L1

l2 l
′
2 L2

lp l
′
p 1




×YL1L2
10 (k̂1, k̂2)d(l1l2)lp(sp;Jp; lt)d

∗
(l′1l

′
2)l
′
p
(sp;Jp; lt), (28b)

and

A2(J0p0;Jfpf ;k1;k2) =
K

2π
√
6

×
∑
l1l
′
1

l2l
′
2

∑
lpl
′
p

splt

∑
L1L2
Jp

(−1)l1+l2+lt+l′p(2lt+1)
√
(2L1+1)(2L2+1)

×

(
l1 l
′
1 L1

0 0 0

)(
l2 l
′
2 L2

0 0 0

){
1 1 2
lp l
′
p lt

}

l1 l
′
1 L1

l2 l
′
2 L2

lp l
′
p 2




×YL1L2
20 (k̂1, k̂2)d(l1l2)lp(sp;Jp; lt)d

∗
(l′1l

′
2)l
′
p
(sp;Jp; lt) . (28c)

Thus, the price one has to pay to reduce an otherwise
large number of parameters which are usually present [33]
in the angular distribution of electrons ejected in DPI, to
just to three is that each of (28) contains the propagation
vectors k1 and k2 of e1 and e2, respectively. That is the
parameters now depend upon the experimental geometry.
However, this dependence can be simplified and readily
adapted to any configuration used in an actual experiment
on DPI. Some of the geometries for which expressions (28)
take particularly simpler forms are discussed hereunder:

(a) Let us observe one of the two photoelectrons, say

e2, along the polar axis of the photon frame, i.e., k̂2(0, φ2).
Then each of the three coefficient A0, A1, and A2 becomes
independent of the azimuthal angles φ1 and φ2. They now
contain only the Legendre polynomials [26] with their ar-
gument as cos θ1. In this geometry, θ1 is obviously the
angle between the directions of two outgoing photoelec-
trons.

(b) The other experimental arrangement which not
only simplifies the geometry dependence of the coeffi-
cients A0, A1, and A2 present in (28), but also separates
each of these into a geometrical and dynamical part is
the one in which two photoelectrons are observed in a
collinear configuration in opposite directions. For exam-
ple, if we take k̂1(θ1, φ1) ≡ (θ, φ), then k̂2‖ − k̂1, i.e.,
k̂2(θ2, φ2) ≡ (π − θ, π + φ). The triply differential cross-
section (25) in this collinear configuration becomes

d2σ(mr)

dε1dθ
≡

d3σ(mr)

dε1dk̂1dk̂2

∣∣∣∣
k̂2‖−k̂1

=

A12(J0p0;Jfpf ; k1; k2)[1 + 1
2mrα12P1(cos θ)

+ 1
2(2− 3m

2
r)β12P2(cos θ)] , (29)

where expressions for A12(J0p0;Jfpf ; k1; k2), α12, and β12
are readily obtained from equations (27) and (28). None of
the three coefficients in (29) depends upon experimental
geometry. Here θ is the angle which the line joining two
photoelectrons makes with the polar axis of the OXYZ
coordinate system. The form (29) of the angular distribu-
tion (27) will be obtained even if e1 and e2 are observed in

the same (i.e., k̂2‖k̂1), rather than in opposite, direction
with, of course, slightly different expressions for A12, α12,
and β12.
Thus, in a collinear experimental geometry, the angu-

lar correlation between e1 and e2 emitted in the process (1)
is completely characterized by merely three geometry-
independent parameters. Each of the parameters can read-
ily be extracted from experimental measurements. For
example, if the ionizing radiation is LP or UP, (29) re-
duces to

d2σ(mr)

dε1dσ1
= A12(J0P0;Jfpf ; k1; k2)[1 + aβ12P2(cos θ1)],

(30)

with a = 1 for LP and a = −1/2 for UP radiation. This
is the well-known form [34] of the angular distribution
of photoelectrons ejected in single photoionization of an
atom or molecule. A measurement of (30) in the magic an-
gle direction (i.e., θ = θm = 54.7◦) will immediately yield
the coefficient A12; whereas, a subsequent determination
of (30) for a single value of θ other than θm will deter-
mine the angular asymmetry parameter β12 for DPI. The
remaining parameter α12 can now readily be extracted by
measuring (29) in the direction θm for RCP or LCP radi-
ation.

(c) Let us now consider the non-coincident, angle-
resolved photoelectron spectroscopy of, say, e1 ejected in
DPI. The corresponding cross-section is given by

d2σ(mr)

dε1dθ1
≡

∫
d3σ(mr)

dε1dk̂1dk̂2
dk̂2 = (−1)

mr
K

4π

×
∑
l1l
′
1l2

lpl
′
pLr

∑
splt
Jp

(−1)l2+lt(2lt + 1)(2Lr + 1)(2l2 + 1)
−1

×

(
l1 l
′
1 Lr

0 0 0

)(
1 1 Lr

mr −mr 0

){
1 1 Lr

lp l
′
p lt

}{
l1 l
′
1 Lr

l′p lp l2

}

×d(l1l2)lp(sp;Jp; lt)d
∗
(l′1l2)l

′
p
(sp;Jp; lt)PLr (cos θ1) . (31)

The last expression is obtained by integrating the triply
differential cross-section (25) over the propagation direc-

tion k̂2 of the photoelectron e2 unobserved in a non-
coincident experiment on DPI.
According to the parity considerations already ex-

plained elsewhere in this article, l1 + l2 and l
′
1 + l2 must

possess the same parity. This implies that both l1 and l
′
1

in a non-coincident DPI should simultaneously be either
even or odd. Then, for the first 3-j symbol in (31) not to
vanish identically, Lr must be even. This means that out
of the three allowed values, Lr = 0 and 2 need only be
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considered. Expression (31) can, consequently, be written
as

d2σ1(mr)

dε1dθ1
=
1

4π

dσ

dε1

[
1 +

1

2
(2− 3m2

r)β1P2(cos θ1)

]
. (32a)

Here

dσ

dε1
=
1

3
K
∑
l1l2
lpsp

∑
ltJp

(2lt+1)[(2l1+1)(2l2+1)(2lp+1)]
−1

×|d(l1l2)lp(sp;Jp; lt)|
2 (32b)

is the integrated photocurrent ejected in DPI and

β1 =

(
dσ

dε1

)−1
K

√
10

3

∑
l1l
′
1l2

lpl
′
plt

∑
spJp

(−1)l2+lt(2lt + 1)

×(2l2 + 1)
−1

(
l1 l
′
1 2

0 0 0

){
1 1 2
l′p lp lt

}{
l1 l
′
1 2

l′p lp l2

}

×d(l1l2)lp(sp;Jp; lt)d
∗
(l′1l2)l

′
p
(sp;Jp; lt) (32c)

is the angular asymmetry parameter for the photoelectron
e1 observed in a non-coincident DPI experiment.
Both of the expression (31) and (32) are formally

identical to the previously [19] derived angular distribu-
tion of electrons ejected in single photoionization of linear
molecules rotating in Hund’s scheme (a) or (b). Moreover,
the form (32a) is identical to that derived by Yang [34] for
single photoionization. Furthermore, calculation of the ex-
pressions (31), (32b), and (32c) is in the angular momen-
tum transfer scheme described in references [29] with, of
course, appropriate modifications introduced in our equa-
tion (9) for DPI. This means that the non-coincident an-
gular distribution too can be analysed in terms of parity-
favoured and -unfavoured transitions [29] as well.
Thus, similar to the angle-resolved electron spec-

troscopy of single photoionization, the angular photocur-
rent in a non-coincident experiment, detecting only one
of the two electrons ejected in DPI, is completely char-
acterized by two parameters, dσ/dε1 and β1. These can

readily be extracted by measuring d2σ(mr)
dε1dθ1

first along the

magic angle θm and then in any other direction. dσ/dε1
will depend very sensitively on the energy shared between
two photoelectrons. The explicit expressions for these two
parameters are given in equations (32b) and (32c) for the
future as well as present study in Section 4. With the help
of expression (32a–32c), one can analyze the angular dis-
tribution of electron e1 emitted in DPI according to the
procedures already used very widely for angular distribu-
tion of electron ejected in single photoionization.

3 Angular and spin correlation between
electrons ejected in DPI

In the following treatment we remove the constraint im-
posed in the last section and assume that the two elec-
trons freed in the DPI process (1) are detected along with

a measurement of their spins. The corresponding differen-
tial cross-section

d3σ(mr;µ1û1;µ2û2)

dε1dk̂1dk̂2
=

K

2J0 + 1

×
∑

M0Mf

|〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉|
2 (33)

is obtained by removing the sums over µ1 and µ2 present in
the spin-unresolved angular correlation (2). The triply dif-
ferential cross-section (33) depends also on the directions
û1 and û2 in which spins of e1 and e2 are, respectively,
quantized in the photon frame. Hence, (33) is effectively
quintuple differential.

3.1 Hund’s coupling scheme (a)

3.1.1 Photoionization matrix element

The states to be used to represent AB and (AB+++ e1+
e2) system in Hund’s coupling scheme (a) have already
been discussed in detail in Section 2.1.1. Those states
properly take into account spin-orbit interaction in the
bound electrons of AB, and of AB++, as well as in the two
continuum electrons e1 and e2. Kets (4) and (7) are, there-
fore, suitable to study even spin-resolved DPI in Hund’s
case (a).
It has also been discussed in Section 2.1.1 that the use

of the kets (4) and (7) renders the photoionization matrix
element 〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉 into
an algebraic sum of four terms each of which contains,
among other things, an integral over the product DJf∗

Dl1∗ Dl2∗ D
1
2∗ D

1
2∗ DJ0 D1. Remembering that the two

photoelectrons are now being observed along with their
spins, the correct definition of the angular momentum
transferred between unobserved reactants is now [6]

jt = lr − j = Jf − J0 . (34a)

Here

j = j1 + j2 , (34b)

with
j1 = l1 + s1 (34c)

and

j2 = l2 + s2 . (34d)

The definition (34) is an adaptation to DPI of that
originally introduced by one [35] of us in the context of
angle- and spin-resolved studies of single photoionization
of atoms and of molecules. While the total angular mo-
mentum for the process (1) is still given by equation (8),
j in (34) is the sum of the angular momenta j1 and j2 of
e1 and e2, respectively.
We now try to evaluate the above-mentioned inte-

gral over ω involving seven rotational harmonics according
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to the angular momentum coupling scheme (34b) which,
probably, is most suitable for the present study of spin-
resolved DPI. With this aim, we couple each one of the
two D

1
2∗ to Dl1∗ and Dl1∗ using the Clebsch-Gordan se-

ries [26] in 3-j symbols. The results of these two couplings
are combined together. The resultant so obtained after
these three coupling operations is recoupled to D1. Finally,
the remaining two (DJf∗ and DJ0) of the seven D’s are
joined together. The effect of these five successive appli-
cations of the Clebsch-Gordan series [26] is to convert the
integral containing seven rotational harmonics in a sum
of the product of ten 3-j symbols and two D-functions.
The integral over ω is now readily evaluated using the
orthonormality [26] of D’s.
A similar procedure is used to perform integration over

ω in the three remaining terms present in the photoion-
ization matrix element explained elsewhere in the current
Section. These, and some other simplifying operations give

〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0M0p0; 1mr〉 =

(−1)1+Jf+Ωf−Ω0−M0
√
2J0 + 1

×
∑

l1n1λ1
l2n2λ2

∑
j1j2j

nj1nj2nj

∑
jtnt

(−1)nj (2jt + 1)[(2l1 + 1)(2l2 + 1)]
− 12

×

(
l1

1
2 j1

−n1 −λ1 nj1

)(
l2

1
2 j2

−n2 −λ2 nj2

)(
j1 j2 j

−nj1 −nj2 nj

)

×

(
1 j jt
mr −nj nt

)(
Jft J0 jt
Mf −M0 nt

)
D
1
2

µ1λ1
(ω1)D

1
2

µ2λ2
(ω2)

×Y n1
l1
(k̂1)Y

n2
l2
(k̂2)〈Jfpf ; l1l2; (j1j2)j|F (jt)|J0p0; 1〉

(a). (35)

Here

see equation (36a) next page

with

see equation (36b) next page

The matrix element present on the right-hand side of the
last expression has already been defined in equation (12).

3.1.2 Selection rules

Physically, neither a change in the definition of the angu-
lar momentum transfer from (9) to (34) nor observation
of the spins of photoelectrons should affect the selection
rules applicable to DPI in Hund’s case (a). One readily
verify from equation (36) that all of the three selection
rules (13) established in Section 2.1.2 for spin-unresolved
DPI are applicable even in the present case when spins of
the photoelectrons are being analysed.

3.1.3 Differential cross-section

After substituting the photoionization matrix ele-
ment (35), the sums over M0 and Mf present in (33)
can be analytically performed. One can further simplify
the consequent expression using some identities [31] from
Racah algebra. The final form of the angular and spin-
correlation function for DPI of a linear molecule rotating
according to Hund’s coupling scheme (a) can be written
as

d3σ(mr ;µ1û1k1;µ2û2k2)

dε1dk̂1dk̂1
=
∑
l1l2
l′1l
′
2

∑
j1j2j
j′1j

′
2j
′

∑
jt

×G(1mr; l1l2; l
′
1l
′
2; (j1j2)j; (j

′
1j
′
2)j
′; jt;µ1û1k1;µ2û2k2)

×〈Jfpf ; l1l2; (j1j2)j|F (jt)|J0p0; 1〉
(a)

×〈Jfpf ; l
′
1l
′
2; (j

′
2j
′
2)j
′|F (jt)|J0p0; 1〉

(a)∗ . (37)

Here we have defined

see equation (38) next page

3.2 Hund’s coupling scheme (b)

3.2.1 Photoionization matrix element

The parity-adapted state of AB in this case of Hund is
still given by equation (17). But, in order to introduce
the angular momentum transfer (34), the state for the
(AB++ + e1 + e2)-system is now obtained by adding the
spin angular momenta first of AB++ and e1 and than the
sum of these two is coupled to the spin angular momen-
tum of e2. Consequently, one should use the following ket
to represent the particles on the right-hand side of the
process (1)

see equation (39) next page

In order to obtain the photoionization matrix ele-
ment needed in the angle- and spin-resolved correla-
tion function (33), we substitute the kets (17) and (39)
in 〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0p0; 1mr〉. This substitu-
tion will split this matrix element into a sum of four terms
each of which contains, in addition to other things, an in-
tegral over the product of five rotational harmonics of the
form DNf∗Dl1∗Dl2∗D1DN0 each with its argument the set
ω of Euler angles. With the aim to introducing the angular
momentum transfer jt defined in equations (34), we first
couple Dl1∗ and Dl2∗ and their resultant to D1. Similarly,
harmonics DNf∗ and DN0 are combined together. These
three coupling operations reduce the integral to a sum
of the product of six 3-j symbols and two D-functions.
The desired evaluation of the integral over ω is now read-
ily carried out. This procedure is repeated to perform the
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〈Jfpf ; l1l2; (j1j2)j|F (jt)|J0p0; 1〉
(a) = (−i)l1l2ei(σl1j1+σl2j2 )

×(2j1 + 1)(2j2 + 1)(2j + 1)
√
(2l1 + 1)(2l2 + 1)(2Jf + 1)

×
∑
JT

(2JT + 1)

{
1 J0 JT
Jf j jt

}
〈nfΛfΣfΩfpf ; l1l2; (j1j2)j|F (JT )|n0Λ0Σ0Ω0p0; 1〉 (36a)

〈nfΛfΣfΩfpf ; l1l2; (j1j2)j|F (JT )|n0Λ0Σ0Ω0p0; 1〉 =
∑
m1ν1
m2ν2

∑
mj1mj2

mj

(−1)mj

×

(
l1

1
2 j1

−m1 −ν1 mj1

)(
l2

1
2 j2

−m2 −ν2 mj2

)(
j1 j2 j
−mj1 −mj2 mj

)(
j Jf JT
mj Ωf MT

)

×〈nfΛfΣfΩfpf ; l1m1ν1; l2m2ν2; |F̄ (JT )|n0Λ0Σ0Ω0p0; 1〉 . (36b)

G(1mr; l1l2; l
′
1l
′
2; (j1j2)j;(j

′
1j
′
2)j
′; jt;µ1û1k1;µ2û2k2) = (−1)

1+mr+µ1+µ2+j+jt(2jt + 1)

×K
∑

L1ML1
L2ML2

∑
S1MS1
S2MS2

∑
J1J2

M12Lr

(−1)l
′
1+l′2+S1+S2

×(2J1 + 1)(2J2 + 1)(2Lr + 1)
√
(2L1 + 1)(2L2 + 1)(2S1 + 1)(2S2 + 1)

×

(
1 1 Lr

mr −mr 0

)(
l1 l
′
1 L1

0 0 0

)(
l2 l
′
2 L2

0 0 0

)(
1
2

1
2 S1

µ1 −µ1 0

)

×

(
1
2

1
2 S2

µ2 −µ2 0

)(
L1 S1 J1
ML1 MS1 M12

)(
L2 S2 J2
ML2 MS2 −M12

)(
J1 J2 Lr

M12 −M12 0

)

×

{
1 1 Lr

j j′ jt

}

l1 l

′
1 L1

1
2

1
2 S1

j1 j
′
1 J1





l2 l

′
2 L2

1
2

1
2 S2

j2 j
′
2 J2





j1 j2 j

j′1 j
′
2 j′

J1 J2 Lr




×Y
ML1

L1
(k̂1)Y

ML2

L2
(k̂2)Y

MS1

S1
(û1)Y

MS2

S2
(û2) . (38)

|JfMfpf ;µ1û1k1;µ2û2k2〉 = (−1)
1−Nf−Mf

~
2

m

√
2Jf + 1

2

×
∑

l1m1n1λ1
l2m2n2λ2

∑
MNf

MSf

S1MS1
S2MS2

il1+l2e−i(σl1+σl2 )(−1)−S2−MS1−MS2

√
(2S1 + 1)(2S2 + 1)

×

(
Nf Sf Jf
MNf MSf −Mf

)(
Sf

1
2 S1

MSf λ1 −MS1

)(
S1

1
2 S2

MS1 λ2 −MS2

)

×Dl1
m1n1

(ω)Dl2
m2n2

(ω)D
1
2∗
µ1λ1

(ω1)D
1
2∗
µ2λ2

(ω2)Y
n1∗
l1

(k̂1)Y
n2∗
l2

(k̂2)

×[|nfΛf ; l1m1; l2m2〉|NfΛfMNf 〉+ (−1)
pf |nf − Λf ; l1m1; l2m2〉|Nf − ΛfMNf 〉]|S2MS2〉 . (39)
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integration over ω present in three other terms of the pho-
toionization matrix element mentioned earlier in this Sec-
tion. After some additional simplifications, the E1 matrix
element in the present case can be written as

〈JfMfpf ;µ1û1k1;µ2û2k2|Fp|J0p0; 1mr〉 =

(−1)mr+Nf+Mf+2S0+J0+Λ0
√
2J0 + 1

×
∑

l1n1λ1
l2n2λ2

∑
j1nj1

j2nj2 jnj

∑
jtnt

(2jt + 1)[(2l1 + 1)(2l2 + 1)]
−1/2

×

(
l1

1
2 j1

−n1 −λ1 nj1

)(
l2

1
2 j2

−n2 −λ2 nj2

)(
j1 j2 j

nj1 nj2 nj

)

×

(
Jf J0 jt
−Mf M0 nt

)(
jt 1 j
−nt mr nj

)
Y n1
l1
(k̂1)Y

n2
l2
(k̂2)

×〈Jfpf ; l1l2; (j1j2j)|F (jt)|J0p0; 1〉
(b)

×D
1
2

µ1λ1
(ω1)D

1
2

µ2λ2
(ω2) . (40)

Here we have defined

〈Jfpf ; l1l2; (j1j2)j|F (jt)|J0p0; 1〉
(b) =

(−i)l2+l1ei(σl1+σl2 )(2j1 + 1)(2j2 + 1)(2j + 1)

×
√
(2l1+1)(2l2+1)(2N0+1)(2S0+1)(2Nf+1)(2Jf+1)

×
∑
lpsp
ltST

(2lp + 1)(2lt + 1)(2sp + 1)
√
2ST + 1

×

{
1
2

1
2 sp

Sf S0 ST

}{
1 lp lt
sp jt j

}

Nf N0 lt
Sf S0 sp
Jf J0 jt




×



l1 l2 lp
1
2

1
2 sp

j1 j2 j


〈nfNfΛf ;(l1l2)lp|F (lt)|n0N0Λ0p0;1〉

(b), (41)

with the right-hand side of the last expression containing
the matrix element (22)

3.2.2 Selection rules

On comparing the matrix elements (21) and (41), both
calculated in Hund’s scheme (b) but for two different def-
initions of the angular momentum transfer, one readily
finds that the selection rules (23) derived earlier for DPI
of a rotating linear molecule in Hund’s scheme (b) are
naturally applicable even in the present case.

3.2.3 Differential cross-section

We next substitute the matrix element (40) in the differ-
ential cross-section (33). After performing necessary sim-
plifications with the help of Racah algebra, one finds that
the final expression for the quintuple differential angle-
and spin-correlation between two photoelectrons ejected
simultaneously from a linear molecule rotating according
to Hund’s case (b) can be written in a form identical
to (37) already derived by us for rotation of the target
according to the scheme (a) of Hund. But the photoion-
ization matrix element to be used in (37) for studying
DPI in the case (b) is now given by (41). This unification
shows that, similar to the spin-unresolved angular corre-
lation already discussed elsewhere in this paper, angle-
and spin-resolved DPI of a rotating linear molecule can
be treated on the same footing both for Hund’s case (a)
or (b). The remaining discussion in the present Section 3
is therefore applicable to both of these coupling schemes.

3.3 Analysis of the spin-resolved angular distribution

Let us write, for brevity, the quintuple differential cross-
section (37) in the following form:

see equation (42) next page

Here we have defined

dl1l2(Jf ; (j1j2)j;J0; jt) ≡

〈Jfpf ; l1l2; (j1j2)j|F (jt)|J0p0; 1〉 (43)

which is to be taken from equation (36) for Hund’s case
(a) and from equation (41) for Hund’s case (b). Expres-
sion (42) has several interesting properties. Firstly, the
geometrical and dynamical factors are completely sep-
arated. The former is given by equation (38), whereas
the latter is obtained from (43). The geometrical factor
can be written also in terms of bipolar harmonics [31] in

two different manners by combining either Y
ML1

L1
(k̂1) with

Y
MS1

S1
(û1) and Y

ML2

L2
(k̂2) with Y

MS2

S2
(û2) or Y

ML1

L1
(k̂1)

with Y
ML2

L2
(k̂2) and Y

MS1

S1
(û1) with Y

MS2

S2
(û2).

Secondly, the correlation function (42) contains an
incoherent sum over the angular momentum jt defined
in equation (34). Similar to the purely angular corre-
lation (25), expression (42) for the angular- and spin-
correlation too can be analysed according to the parity-
favoured and -unfavoured transitions. These, in the pres-
ent case, are characterized by the respective even and odd
values of 1 + jt − j. In view of (34a), jt = j ± 1 are the
favoured and jt = j are the unfavoured values of the angu-
lar momentum transfer. Then according to equation (34b),
2min(j1, j2) + 1 is the number of parity-unfavoured tran-
sitions for given j1 and j2; whereas, the total number of
parity-favoured transitions is 2j1 + 2 for j1 = j2 �= 0, etc.
In the case of single photoionization, on the other hand,
there will be only one (with jt = j) and two (with jt =
j ± 1) such transitions [35], respectively, for each j. Thus
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d3σ(mr ;µ1û1k1;µ2û2k2)

dε1dk̂1dk̂2
=
∑
l1l2
l′1l
′
2

∑
j1j2j
j′1j

′
2j
′

∑
jt

G(1mr; l1l2; l
′
1l
′
2; (j1j2)j; (j

′
1j
′
2)j
′; jt;µ1û1k1;µ2û2k2)

×dl1l2(Jf ; (j1j2)j;J0; jt)d
∗
l′1l
′
2
(Jf ; (j

′
1j
′
2)j
′;J0; jt) . (42)

the presence of two, rather than of one, photoelectrons
has considerably increased the number of both parity-
favoured as well as -unfavoured transitions contributing
to DPI (1).

Another interesting point about (42) is that its form is
identical to that already derived by one of us [6] for angle-
and spin-resolved DPI in atomic targets. The geometrical
factor (38) exactly coincides with equation (9b) of refer-
ence [6]. The dynamical factors are, of course, different
for atomic and molecular targets. This unification of DPI
in rotating linear molecules with that of atoms could be
possible because we have represented both AB and AB++

in the present paper by parity-adapted states [13,14]. The
rest of the discussion in this section on spin-resolved DPI
of rotating linear molecules is similar to the treatment
presented in reference [6] for the same process in atomic
targets.

It is obvious from equation (34c, 34d) that each of
j1 and j2 is half-integer, implying that j in (34b) is an
integer. Consequently, jt in (34a) is also an integer.
This, in turn, means that each of J0 and Jf , in addi-
tion to being finite, is simultaneously either integer or
half-integer. Hence, similar to the case of spin-unresolved
DPI discussed in Section 2 in this paper, the total angu-
lar momentum J0 of AB can change only by an integral
amount. Also, jt too can take only a finite number (given
by 2min(J0, Jf ) + 1) of integral values. Consequently, on
account of the triangular condition ∆(|lr| = 1, j, jt), j
is both integer as well as finite. Hence j1 and j2 can
take only half-integral values compatible with the inequal-
ities (34c) and (34d), l1 = j1 ±

1
2 and l2 = j1 ±

1
2 , re-

spectively. Thus once j1 and j2 are known, the partial
waves l1 and l2 of the photoelectron e1 and e2 are auto-

matically known. In conclusion, (38) has Y
MS1

S1
(û1) and

Y
MS2

S2
(û2) for S1, S2 = (0, 1) but a large number of both

Y
ML1

L1
(k̂1) and Y

ML2

L2
(k̂2), with |l1− l′1| ≤ L1 ≤ l1+ l′1 and

|l2 − l′2| ≤ L2 ≤ l2+ l′2 respectively, will be present in this
geometrical factor.

The angular correlation function for spin-unresolved
DPI can be determined also by summing (42) over µ1
and µ2. The triply differential cross-section so obtained
will in principle be the same as derived in equation (25)
in this paper. But the two expressions will have different
structure for the simple reason that while the former will
correspond to the angular momentum transfer (34), the
latter is based on the definition (9). It has already been
discussed elsewhere in this paper that the definition (9) is
more suitable for spin-unresolved DPI.

The quintuple differential cross-section (42) is ex-
tremely complicated. Its analysis will become simpler if
it can be parameterized. One of the possible methods to
achieve this goal is to write (42) in the following form:

d3σ(mr ;µ1û1;µ2û2)

dε1dk̂1dk̂2
= (−1)µ1+µ2

×
∑
S1S2
STM

(
1
2

1
2 S1

−µ1 µ2 0

)(
1
2

1
2 S2

−µ1 µ2 0

)

×AS1S2
STM

(mr;k1;k2)Y
S1S2
STM

(û1, û2) . (44)

Here Y’s are the bipolar harmonics [31] obtained by com-

bining Y
MS1

S1
(û1) and Y

MS2

S2
(û2) in (42). A straightforward

comparison between (42) and (44) will immediately give

an expression for the coefficients AS1S2
STM

. Correlation (44)
is completely characterised by sixteen independent param-
eters which depend upon the experimental configuration
through the propagation vectors k1 and k2. Expressions
for all these parameters are readily derived in terms of
AS1S2
STM

obtained from equation (42). Each of the sixteen
parameters can be analysed in terms of parity-favoured
and -unfavoured transitions.
In the remaining part of this Section, we briefly con-

sider some of the important and useful geometries in which
the complicated expression (42) (or (44)) takes particu-
larly simpler forms.

a) Let us take both e1 and e2 polarized longitudinally

along their respective direction of propagation, i.e., û1‖k̂1
and û2‖k̂2. This means that one can make in the geomet-
rical factor (38) the replacement

Y
ML1

L1
(k̂1)Y

MS1

S1
(û1)→ Y

ML1

L1
(k̂1)Y

MS1

S1
(k̂1) =

∑
A1a1

√
(2L1 + 1)(2S1 + 1)(2A1 + 1)

4π

×

(
L1 S1 A1

0 0 0

)(
L1 S1 A1

ML1 SS1 a1

)
Y a1
A1
(k̂1) (45)

for the photoelectron e1 and a similar one for the prod-

uct Y
ML2

L2
(k̂2)Y

MS2

S2
(û2) for the photoelectron e2. Then

the sums over (ML1 ,MS1) and over (ML2 ,MS2) present
in (38) are readily performed using unitarity [26] of 3-j
symbols. The geometrical factor, after these operations
reduces to a form which is considerably simpler than that
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given in equation (38). The new form of the geometri-
cal factor so obtained is particularly suitable for study-
ing angular distribution of longitudinally polarized elec-
trons in DPI in the two following photon-propagation and
electron-detection configurations.

i) Let us observe one, say e2, of the two longitudinally
polarised photoelectrons along the polar axis of the photon
frame, i.e., k̂2(θ2 = 0, φ2). The quintuple differential cross-
section now becomes a series

d3σ(mr;µ1, µ2)

dε1dθ1
≡
d3σ(mr;µ1û1;µ2û2)

dε1dk̂1dk̂2

∣∣∣∣∣∣∣∣
û1‖k̂1

û2‖k̂2

k̂2‖ẑ

=

∑
J1

AJ1(mr;µ1k1;µ2k2)PJ1(cos θ1) (46)

in Legendre polynomials. The argument θ1 of Legendre
polynomials is the angle between e1 and e2. The photo-
electron e2 in expression (46) is, however, always observed
along the polar axis of the photon frame. Expression for
the coefficient AJ in terms of the dynamical quantities
can readily be obtained and the values of J1 contributing
to (46) can be determined [6] by using the triangular and
other conditions needed to be satisfied by various 3-j, 6-j,
and 9-j symbols present in (38).

ii) The other convenient experimental geometry for the
detection of two longitudinally polarized photoelectrons
is to observe them in opposite directions. The correlation
function for the spin-resolved DPI in this collinear exper-
imental arrangement is completely characterised by three
geometry-independent parameters as

d3σ‖(mr;µ1, µ2)

dε1dθ
≡

d3σ(mr ;µ1û1;µ2û2)

dε1dk̂2dk̂2

∣∣∣∣∣∣∣∣
û1‖k̂1
û2‖k̂2
k̂1‖k̂
k̂2‖ − k̂

=

A− 2mrB cos θ +
1

2
(2− 3m2

r)CP2(cos θ) . (47)

Here, k̂ = (θ, φ) with θ the angle between the polar axis for
the space frame and the line joining two oppositely mov-
ing photoelectrons. Detailed expressions for the parame-
ters A, B and C present in (47) can readily be derived, if
needed. The correlation between longitudinally polarised
e1 and e2 in this collinear geometry is completely deter-
mined by a single parameter A for all states |J0M0p0〉
of AB and |JfMfpf 〉 of AB++ if the ionizing radiation
is LP/UP and the photoelectrons depart from the target
in opposite directions at the magic angle θ = θm. The
remaining parameters B and C too are extracted by ex-
perimentally measuring (47) first for RCP/LCP radiation
with θ = θm and then with LP/UP light with θ �= θm.
Angular correlation between two longitudinally polarised
e1 and e2 moving in the same direction will also be de-
scribed by equation (47) but expressions for A, B, and
C will naturally be different from those when they are
moving in opposite directions.

b) One may also simplify a DPI experiment by analyz-
ing spin correlation between angle resolved, say, electron
e1 but integrated photocurrent of e2. The correlation func-
tion for such an experiment is given by

d2σ(mr;µ1û1;µ2û2)

dε1dk̂1
≡

∫
d3σ(mr;µ1û1;µ2û2)

dε1dk̂1dk̂2
dk̂2 =

1

2

d2σ1(mr;µ1û1)

dε1dk̂1
+ f12(mr;µ1û1k1;µ2û2) , (48)

where the last result has been obtained by using (44).
Thus non-observation of the direction of ejection of e2
has split the correlation function (44) into two distinct

terms. In (48), d2σ1(mr;µ1û1)/dε1dk̂1 is the angle- and
spin-resolved photocurrent due to e1 ejected in DPI (1)
but derived without simultaneous detection of the electron
e2. This expression is thus applicable to non-coincident
experiments on angle- and spin-resolved DPI. It has been
discussed further in detail in equation (52). The function
f12, present on the right-hand side of (48) depends upon

the propagation vector k̂1 of e1 as well as on the spin
quantization directions (û1, û2) of the two photoelectrons.
This function obviously represents the contribution to the
DPI due to analysis of the spin of the photoelectron e2
whose direction of departure from the target molecule is
not detected.

c) Complications present in (48) can be further re-
duced if one does not detect the propagation direction
even of e1. This pure spin correlation function is given by

d2σ(mr ;µ1û1;µ2û2)

dε1
≡

∫
d3σ(mr ;µ1û1;µ2û2)

dε1dk̂1dk̂2
dk̂1dk̂2 ≡

1

4

dσ

dε1

{
1− 2mr[µ1γ1 cos θ

′
1+µ2γ2 cos θ

′
2]

+4µ1µ2[γ10P1(û1 · û2) +mrγ11 sin θ
′
1 sin θ

′
2 sin(φ

′
1 − φ

′
2)

+(3m2
r − 2)γ12(sin θ

′
1 sin θ

′
2 cos(φ

′
1 − φ

′
2)

−2 cos θ′1 cos θ
′
2)
}
. (49)

The form of this distribution is exactly identical to that
obtained by us to describe purely spin correlation in
DPI of atoms [6] or between a photo-Auger electron
pair [17–19] from atomic and molecular targets. Thus, in
addition to the spin-unresolved integrated cross-section
dσ/dε1 for DPI, one needs five additional parameters
(γ1, γ2, γ10, γ11, γ12) for complete specification of pure
spin-correlation between two electrons ejected simultane-
ously from a linear molecule rotating according to Hund’s
coupling scheme either (a) or (b). None of these dynam-
ical parameters involve experimental geometry. Expres-
sions for each of these in terms of the photoionization am-
plitude (43) can readily be obtained. The following prop-
erties of the correlation (49) can be studied even without
a knowledge of those expressions.

i) The spin-resolved, integrated photocurrents measured
in a non-coincident experiment on DPI are respectively
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given by

dσ1(mr;µ1û1)

dε1
=
∑
µ2

dσ(mr ;µ1û1;µ2û2)

dε1
=

1

2

dσ

dε1
(1− 2mrµ1γ1 cos θ

′
1) (50a)

and

dσ2(mr;µ2û2)

dε1
=
∑
µ1

dσ(mr ;µ1û1;µ2û2)

dε1
=

1

2

dσ

dε1
(1− 2mrµ2γ2 cos θ

′
2) , (50b)

when either e1 or e2 is only detected, respectively. Thus
for the complete specification of each of the non-coincident
currents (50), one needs only two parameters, one of these
dσ/dε1 is the spin-unresolved integrated cross-section for
DPI. However, when the spin orientations of both of the
photoelectrons are measured simultaneously the number
of parameters in (49) increases from two to six. The spin
of two electrons departing from AB interact with each
other affecting their mutual orientations in space. This
interference effect between the quantization directions of
e1 and e2 is represented by three parameters γ10, γ11, and
γ12 in equation (49). These may therefore be called three
spin-interference parameters.

ii) It is obvious from equation (50) that for non-coincident
integrated photocurrents measured in DPI to depend upon
the spin of the observed electron, the ionizing radiation
in (1) should be neither LP nor UP. This result is the same
as those obtained for spin-resolved integrated Auger cur-
rent [18,19] produced in the decay of a vacancy created by
the absorption of electromagnetic radiation and for inte-
grated photocurrent [5,35–37] emitted in single photoion-
ization. The spin correlation function (49), on the other
hand, does nor become independent of spin even for the
absorption of a LP or UP photoionization. Thus, in order
to study the correlation between the orientations of the
spins of two photoelectrons emitted in DPI, without de-
tecting their directions of propagation, only CP light need
not be used. The simultaneously measured integrated cur-
rent of both photoelectrons emitted by the absorption of
LP or UP light may also depend upon the orientations of
the spin of e1 and e2 due to two (γ10, γ12) of the three
spin-interference parameters present in equation (49).
In order to extract the six parameter occurring in (49)

and for studying the degree of simultaneous spin polarisa-
tion of both e1 and e2, one can use the procedure already
described in detail in reference [18] for photo-Auger elec-
trons coincidence spectroscopy of molecules.

d) We have already discussed in the Introduction to
this paper that due to the reduction [2] in the intensity by
order of magnitude of an electron beam in a Mott detec-
tor, measurements of the spin orientation of two electrons
moving in continuum in DPI are difficult to perform. Con-
sequently, an experiment which is much simpler compared
to those already discussed by us in a)-c) in this Section

will be the one in which one, say e1, of the two photo-
electrons emitted in the DPI (1) is detected with its spin
while the other (i.e., e2) is observed without its spin. The
correlation between angle- and spin-resolved e1 but only
angle-resolved e2 is given by

d3σ(mr;µ1û1)

dε1dk̂1dk̂2
≡
∑
µ2

d3σ(mr ;µ1û1;µ2û2)

dε1dk̂1dk̂2
=

1

2

d3σ(mr)

dε1dk̂1dk̂2
+ g12(mr;µ1û1k̂1; k̂2) . (51)

In this last expression, obtained by analytically sum-
ming (42) over µ2, d

3σ(mr)/dε1dk̂1dk̂2 is the angular cor-
relation function (25) between the spin-unresolved e1 and
e2 emitted in DPI (1). This correlation has already been
discussed in detail in Section 2 of the present paper.

Thus the correlation between an angle- and spin-
resolved photoelectron and an angle-resolved photoelec-
tron, both of which are ejected simultaneously in DPI (1),
is described by pure angular correlation between them plus
another function that arises due to the analysis of the spin
of one of the two ejected electrons. A study of the correla-
tion (51) is certainly easier than those discussed earlier in

this Section. The angular correlation d3σ(mr)/dε1dk̂1dk̂2,
the first term on the right-hand side of (51), between two
unpolarized photoelectrons has already been calculated
theoretically for example by Rouzo [10] for DPI of H2.
The results of such spin-unresolved studies can directly be
used in equation (51) as well. A further calculation of g12
will be sufficient to describe the correlation (51) theoreti-
cally. Alternatively, the difference in the measured values
of d3σ(mr;µ1û1)/dε1dk̂1dk̂2 and of d

3σ(mr)/dε1dk̂1dk̂2,
will immediately give the experimental value of g12 which
represents the influence of the detection of the spin of e1
on its angular correlation with spin-unresolved e2.

e) The next experiment, in the increasing order of
simplicity but with further loss of information, will be
the non-coincident measurement of the angle- and spin-
resolved photocurrent of, say, e1 while the second electron
e2 remains unobserved. Cross-section for this spectroscopy
is given by

d2σ1(mr;µ1û1)

dε1dk̂1
=
∑
µ2

∫
d3σ(mr;µ1û1;µ2û2)

dε1dk̂1dk̂2
dk̂2 .

After substituting (44) in the above expression, one

can analytically perform integration and sum over k̂2 and
µ2, respectively. After some complicated use of Racah al-
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gebra, we find

d2σ1(mr;µ1û1)

dε1dk̂1
= (−1)

1
2+µ1+mr

×K
∑
l1l
′
1l2

j1j
′
1j2

∑
jj′jt
L1S1

∑
J1M1

(−1)l
′
1+j1−j2+j+j′+jt+S1+J1

× (2jt+1)(2J1 + 1)
√
(2L1 + 1)(2S1 + 1)

× [(2l2 + 1)(2j2 + 1)]
−1

×

(
l1 l
′
1 L1

0 0 0

)(
1
2

1
2 S1

µ1 −µ1 0

)(
L1 S1 J1
M1 −M1 0

)

×

(
1 1 J1
mr −mr 0

){
1 1 J1
j j′ jt

}{
j j′ j1
j′ j j2

}

l1

1
2 j1

l′1
1
2 j′1

L1 S1 J1




×dl1l2(Jf ; (j1j2)j;J0; jt)d
∗
l′1l2
(Jf ; (j

′
1j2)j

′;J0; jt)

×YM1

L1
(k̂1)Y

−M1

S1
(û1) . (52a)

In (52a), J1 = 0-2; S1 = 0, 1; L1 = 0-3. But, according
to the selection rules discussed elsewhere in this paper,
l1 + l2 and l

′
1 + l2 must have same parities. This, in turn,

means that l1 and l
′
1 must simultaneously be either even

or odd. Since, according to the first 3-j symbol occurring
in (52a) l1+ l

′
1+L1 = even, i.e., L1 must be even. Hence,

the allowed values of L1 are 0 and 2. The distribution (52a)
can now be written as

d2σ1(mr;µ1û1)

dε1dk̂1
=
1

8π

dσ

dε1{
1+ 1

2(2− 3m
2
r)β1P2(cos θ1)− 2mrµ1γ1 cos θ

′
1 + 2mrµ1

[P2(cos θ1) cos θ
′
1 +

1
2
P1(cos θ1) sin θ

′
1 cos(φ1 − φ

′
1)]δ1

+
2

3
(3m2

r − 2)µ1ξ1P
1
2 (cos θ1) sin θ

′
1 sin(φ1 − φ

′
1)
}
. (52b)

Either or both of the expressions (52) are formally
identical to those derived earlier [5,35,37] for angle- and
spin-resolved single photoionization of atomic and molec-
ular targets and for [6] non-coincident DPI of atoms. This
formal equivalence between (52) and those derived else-
where [5,6,35,37] is, however, an expected result. This
means that the analysis of angle- and spin-resolved pho-
toelectron spectroscopy developed in references [5,6,35],
and [37] becomes exactly applicable even in the present
case.
Expression (52b) means that the spin-resolved angu-

lar photocurrent in a non-coincident experiment on DPI
of linear molecules rotating according to Hund’s coupling
scheme either a) or b) is completely characterized by five
geometry-independent parameters dσ/dε1, β1, γ1, δ1, and
ξ1. The detailed expressions for each of these parame-
ters are not relevant for the discussion presented further
in this paper and have, therefore, not been given herein.
These are, however, exactly the same as those derived else-
where [6]. With the help of those [6] expressions and using

the procedure of references [5,6,35] and [37] on can read-
ily analyze the spin-resolved non-coincident photocurrent
ejected in DPI of a rotating linear molecule.

f) Finally, let us consider the simplest possible experi-
ment which can be performed in DPI involving spin anal-
ysis of photoelectrons, namely the measurement of the
non-coincident, spin-resolved integrated photocurrent. For
electron e1, it is given by

σ1(mr;µ1û1) =

∫
d2σ1(mr;µ1û1)

dε1dk̂1
dk̂1 .

This yields an expression identical to that given in equa-
tion (50a). The parameter γ1 present therein is the same
as that occurring in (52b). Its explicit form is

γ1 = (−1)
1
2

(
dσ

dε1

)−1
K

4π

∑
l1l2
j2jt

∑
j1j

′
1

jj′

(−1)l1+j2+j+j′+jt

×(2jt + 1)[(2l1 + 1)(2l2 + 1)(2j2 + 1)]
−1

×

{
l1

1
2 j1

1 j′1
1
2

}{
j1 j2 j

j′ 1 j′1

}{
1 1 1

j j′ j1

}

×dl1l2(Jf ; (j1j2)j;J0; jt)d
∗
l1l2
(Jf ; (j

′
1j2)j

′;J0; jt) . (53a)

with

dσ

dε1
=
1

3
K
∑
l1l2j
j1j2jt

(2jt + 1)

×[(2l1 + 1)(2l2 + 1)(2j1 + 1)(2j2 + 1)(2j + 1)]
−1

×|dl1l2(Jf ; (j1j2)j;J0ljt)|
2 . (53b)

The degree of spin polarization of the non-coincident in-
tegrated current of photoelectron e1 is

P1(mr; û1) =

σ1(mr; 12 û1)− σ1(mr;− 1
2 û1)

σ1(mr; 12 û1) + σ1(mr;− 1
2 û1)

= −mrγ1 cos θ
′
1. (54)

Thus, in order to have a non-zero degree of spin polariza-
tion in a non-coincident experiment on DPI, it is necessary
that the absorbed photon be CP and the detected elec-
tron be spin-resolved in other than x-y plane. This degree
is then proportional to a single parameter γ1. These and
other similar properties of the spin-resolved, integrated,
non-coincident photocurrent ejected in DPI of a rotating
linear molecule are identical to those found to exist in
single photoionization [5,35–37] of atoms and molecules,
non-coincident DPI of atoms [6], as well as in the Auger
spectroscopy [18,19,27].

4 Application

Let us consider, as an example for the application of the
framework developed in the preceding sections, DPI in the
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3σ2g shell of N2, that is

hνr +N2

(
1σ2g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g
1Σ+

g

)
→

N++
2

(
1σ2g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g3σ

0
g
1Σ+

g

)
+e1(µ1û1k1) + e2(µ2û2k2) . (55)

There are several reasons for choosing N2 as a test case
in this, probably the first, study of DPI of a rotating lin-
ear molecule. Firstly, N2 is relatively a “light” molecule.
It thus possesses a comparatively “large” rotational con-
stant. Its rotationally resolved photoelectron spectrum
has been investigated in several (m + n)-REMPI stud-
ies [1]. Recently, Ohrwall and Baltzer [38] have performed
experiments on angular distribution of electrons ejected
in single photoionization of 3σ2g shell of N2, leaving the

photoion N+
2 in different rotational states. In this exper-

iment [38], rotationally resolved both integrated cross-
section σ and angular asymmetry parameter β have been
measured. Therefore a comparison of the angle- and ro-
tationally resolved photoelectron spectrum recorded in a
non-coincident experiment on DPI in the 3σ2g shell of N2

with that of its single ionization [38] will be a direct mea-
sure of the role played by electron-electron correlation on
the angular distribution of the detected photoelectron (e1,
say). In particular, σ1(≡ dσ1/dε1) and β1 specify, accord-
ing to equation (32a), the angular distribution of a single
photoelectron detected in a non-coincident experiment on
DPI. Comparison of these (σ1 and β1) parameters with
σ and β measured by Ohrwall and Baltzer [38] for single
photoionization in the 3σ2g shell of N2 will give the above-
mentioned information for any given rotational transition.

Secondly, both N2 and N
++
2 are in their 1Σ+

g state,
each with a closed-shell electronic configuration. Therefore
bound electrons neither in N2 nor in N

++
2 contribute to

the SOI. The spin polarization of both electrons ejected in
the DPI process (55) will therefore be caused by the SOI
in the continuum of each of the photoelectrons e1 and e2.
But its contribution to a light molecules like N2 will be
negligibly small. We have therefore not analyzed the spin
of electrons ejected in the process (55) in N2.

In equation (55), both N2 and N
++
2 have Λ0, Λf = 0

with S0, Sf = 0. This means [14] that the parities of
these species are p0, pf = 0. Also, Hund’s coupling scheme
b) obviously becomes most suitable [13] in the present
application. The reduced dipole amplitudes (26) needed
for the process (55) are then obtained from equation (21).
The triangular conditions to be satisfied by the various
angular momenta present in the two 6-j symbols on the
right-hand side of equation (21) give sp = 0, J0 = N0, and

Jp, Jf = Nf . Equations (26), (21) and (22) now give

d(l1l2)lp(0;Nf ; lt) =
1

2
[1− (−1)l1+l2+N0+Nf ]

×(−i)l1+l2ei(σl1+σl2 )(2lp+1)
√
(2l1+1)(2l2+1)(2Nf+1)

×

(
N0 Nf lt
0 0 0

) ∑
m1m2
λr

(
l1 l2 lp
−m1 −m2 λr

)(
1 lp lt
λr −λr 0

)

×〈nf0; l1m1; l2m2|F |n00; 1λr〉 . (56)

This provides us with the selection rule l1+l2+N0+Nf =
odd, which agrees with that obtained from equation (23c)
for an application to the process (55).
In order to proceed further, we need to know the

E1 amplitudes present on the right-hand side of (56).
If one neglects the core relaxation effects by assuming
that the one-electron orbitals of N2 not directly involved
in the photoionizing transition (55) remain unchanged,
then N2 can be treated as a two-electron system. Its anti-
symmetrized bound electronic state is then given by

〈x1, x2|n00〉=
1
√
2
3σ2g(r1, r2)[α(1)β(2) − (1
 2)]. (57a)

In this expression, x1 and x2 represent space and spin
coordinates of the two electrons occupying the 3σ2g shell
of N2. The spatial part of the state (57a) is described by
the product

3σ2g(r1; r2) =
1

r1r2

(
even∑
n1=0

P (3σg;n1; r1)Y
0
n1(r̂1)

)

×

(
even∑
n2=0

P (3σg;n2; r2)Y
0
n2(r̂2)

)
(57b)

of two one-electron orbitals. Here, P ’s are the radial func-
tions of a 3σg orbital of N2. In the expression (57b), we
have used single centre expansion of the molecular bound
orbital. These are about the centre of mass of the molecule.
On account of the gerade character of the 3σg orbital of
N2 being photoionized in (55), both of the summation in-
dices n1 and n2 in (57b) take only even integral values;
whereas the angular parts Y m

l present in (57b) are those
which correspond to the projection of the orbital angular
momentum of each electron to be zero along the inter-
nuclear axis of N2. Also, in equation (57a), α and β are
two spinors.
The anti-symmetrized state of two photoelectrons is

〈x1, x2|l1m1, l2m2〉 =
1

2
[〈r1|l1m1〉〈r2|l2m2〉

+(1
 2)][α(1)β(2)− (1
 2)] , (58a)

with

〈r1|l1m1〉 ≡ F
−
l1m1

(r1) =
1

r
P−(ε1l1m1; r1)Y

m1
l1
(r̂1) (58b)



N. Chandra and S. Sen: Double photoionization of rotating linear molecules 475

and a similar expression for 〈r2|l2m2〉. In equation (58b),
P−(ε1l1m1; r1) represents the radial part of the spatial
function of the photoelectron e1 in (55). A minus sign
on P means that it satisfies the incoming wave bound-
ary conditions [28] appropriate for photoionization. It is
normalized on the energy scale such that∫ ∞

0

P−∗(ε′1l1m1; r1)P
−(ε1l1m1; r1)dr1 = δ(ε1 − ε

′
1) .

This normalization is consistent with the definition of the
E1 operator given in reference [24] and with that of the
constant K used in equation (2) and elsewhere in this
paper. Moreover, on account of the cylindrical nature of
the nuclear field in a linear molecule, the radial function
in (58b) depends upon the projectionm1 of the orbital an-
gular momentum of e1 along the inter-nuclear axis. Also,
we know from equations (6) and (7) in reference [24] that
in the dipole length approximation

〈nf0; l1m1; l2m2|F |n00; 1λr〉 =

A(1)

√
4π

3

〈
l1m1; l2m2

∣∣∣∣∣
2∑

i=1

riY
λr
1 (r̂i)

∣∣∣∣∣n00
〉
, (59a)

with

A(1) =

(
4π

3
α30E

3
r/e

4

) 1
2

. (59b)

One now substitutes the states (57) and (58) in (59)
and simplifies the resulting expression using Racah alge-
bra. The final expression for 〈nf0; l1m1; l2m2|F |n00; 1λr〉
so obtained is then used in (56). This procedure gives us
the desired expression for the reduced amplitude of DPI
in the following form:

d(l1l2)lp(0;Nf ; lt) =
1

2
[1− (−1)l0+lf+N0+Nf ]

×(2lp + 1)
√
2Nf + 1

(
N0 Nf lt
0 0 0

)∑
λr

(
1 lp lt
λr −λr 0

)

×

[(
l1 l2 lp
−λr 0 λr

)
I(ε2l2)Id(ε1l1λr)

+

(
l1 l2 lp
0 −λr λr

)
I(ε1l1)Id(ε2l2λr)

]
. (60)

Here

I(εl) = (−i)leiσl
√
2l+ 1 I ′(εl) , (61a)

with

I ′(εl) =

∫ ∞
0

P−∗(εl0; r)P (3σg; l; r)dr (61b)

in the overlap integral between the radial function of
bound electron occupying the 3σg shell of N2 before ion-
ization, and that of a photoelectron. The radial functions

present in the integral on the right-hand side of (61b) are
defined in equations (58b) and (57b), respectively. On the
other hand

Id(εlλr) = (−i)
leiσl(−1)λr (2l + 1)A(1)

×
even∑
n=0

√
2n+ 1

(
l 1 n
0 0 0

)(
l 1 n
λr −λr 0

)
I ′d(εlλr;n), (62a)

where

I ′d(εlλr;n)=
√
2A(1)

∫
P−∗(εlλr; r)rP (3σg ;n; r)dr (62b)

is the one-electron radial dipole integral.
In view of the bound-state wave function (57b), l in the

overlap integral (61) and n in the dipole integral (62) are
always even. However, on account of the first 3-j symbol
present in (62a), l in the dipole integral (62b), on the other
hand, has to be odd. This, in turn, implies that l1 + l2 is
always odd in the reduced amplitude (60). Consequently,
satisfaction of the selection rule l1 + l2 +N0 +Nf = odd,
applicable in the present study, requires that N0 + Nf

must always be even. That is, N0 and Nf are either odd
or even simultaneously. Thus, in the DPI process (55), one
has a transition from an even rotational state of N2 to an
even rotational state of N++

2 , or between odd rotational
states of these two species. But transitions connecting even
to odd or odd to even rotational states of N2 and N

++
2 ,

respectively, are not allowed in E1 approximation. The
E1 selection rules even→ even, odd→ odd, even9 odd,
and odd 9 even rotational transitions will, in fact, be
applicable to DPI in σg orbital of all those linear molecules
which have a centre of symmetry, i.e., belong to the D∞h

point group.
Let us consider only the first three, i.e., s-, p-, and

d-partial waves to represent photoelectrons in the contin-
uum. We then have from (61)

I(ε0) = eiσ0I ′(ε0) ,

I(ε1) = 0 ,

I(ε2) = −eiσ2
√
5I ′(ε2) (63a)

for the overlap integrals. The dipole integrals (62) for these
three partial waves are given by

Id(ε0λr) = 0 ,

Id(ε2λr) = 0 ,

Id(ε1λr) = −e
iσl(−1)λr

[
I ′d(ε1λr; 0)

+
2
√
5
(2− 3λ2r)I

′
d(ε2λr; 2)

]
. (63b)

The permitted combinations of (l1, l2) in the present ex-
ample are (l1, l2) = (0, 1), (1, 0), (1, 2), and (2, 1). Because
N0 +Nf must always be even, then according to the first
3-j symbol present on the right-hand side of the dipole
amplitude (60), one must always have lt even, otherwise
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d(l1l2)lp(0;Nf ; lt) vanishes identically. Therefore, in the
present case we have lt = 0, 2, and 4 in expression (60) for
the reduced dipole amplitude. For these values of (l1, l2),
lp, and of lt, one needs to consider the following reduced
amplitudes out of those given by (60):

d(01)1(0;Nf ; 0)=(−1)
Nf g1(ε2)I(ε10)δN0Nf ,

d(01)1(0;Nf ; 2)=

√
2(2Nf + 1)

5

(
N0 Nf 2
0 0 0

)
f(ε2)I(ε10),

d(12)1(0;Nf ; 0)=(−1)
Nf

√
2

5
f(ε1)I(ε22)δN0Nf ,

d(12)1(0;Nf ; 2)=
1

5

√
2Nf + 1

(
N0 Nf 2
0 0 0

)
g2(ε1)I(ε22) ,

d(12)3(0;Nf ; 2)=
1

5

√
2Nf + 1

(
N0 Nf 2
0 0 0

)
g3(ε1)I(ε22) ,

d(12)3(0;Nf ; 4)=2

√
2Nf+1

15

(
N0 Nf 4
0 0 0

)
f(ε1)I(ε22).(64)

The reduced matrix elements (60) for (l1, l2) = (1, 0) and
(2,1) are obtained by interchanging ε1 and ε2 in the ex-
pressions (64) which contain d’s for (l1, l2) = (0, 1) and
(1,2). In relations (64) we have defined

f(εi) = Id(εi11)− Id(εi10) ,

g1(εi) = Id(εi10) + 2Id(εi11) ,

g2(εi) = 2Id(εi10) + Id(εi11) ,

g3(εi) = 3Id(εi10) + 4Id(εi11) . (65)

Here Id’s are obtained from equations (63b). For the values
of lt = 0, 2, and 4 three possible transitions from the N0th
rotational state of N2 to the Nfth rotational state of N

++
2

in the DPI process (55) are ∆N ≡ Nf −N0 = 0,±2, and
±4.

With the help of reduced dipole amplitudes (64),
one can study angular correlation between photoelectrons
emitted simultaneously from the 3σ2g shell of N2 accom-
panied with rotational N0 → Nf transition ∆N = 0,±2,
and ±4. It can be done in any geometry or experimental
arrangement, some of which have been discussed briefly in
Section 2.3. Similarly one can take the photon absorbed in
equation (55) of any polarization. However, for the reasons
mentioned at the beginning of the present Section, we cal-
culate hereafter only the parameters dσ/dε1 and β1, which
give, according to equations (32), the angular photocur-
rent of electron e1 observed for a N0 → Nf transition in
non-coincident experiment on DPI (55) of N2 performed
without detecting the photoelectron e2.

i) N0 → Nf = N0 ± 4 .

For this transition we have

dσ

dε1
=(2Nf+1)

4K

525

(
N0 Nf 4
0 0 0

)2 2∑
i, j = 1
i �= j

|f(εi)I(εj2)|
2, (66a)

β1 =
1

35

5 + 7ρ4
1 + ρ4

, (66b)

with

ρ4 = |d(12)3(0;Nf ; 4)|
2/|d(21)3(0;Nf ; 4)|

2 =

|f(ε1)I(ε22)|
2/|f(ε2)I(ε12)|

2 . (66c)

It is obvious from (66b) and functions (65) that β1 =
1
7 for

ρ4 = 0, i.e., when either the dipole integrals Id(ε110) =
Id(ε111) for the p-wave of the observed photoelectron e1
or the overlap integral I(ε22) for the d-wave of the un-
observed e2 vanishes. On the other hand, if the dipole
integrals Id(ε210) and Id(ε211) for the p-wave of the un-
observed photoelectron e2 become equal, or the overlap
integral I(ε12) = 0 for the observed e1, i.e., ρ4 = ∞, the
asymmetry parameter β1 then increases to

1
5 . Thus the

angular distribution of photoelectrons observed in non-
coincident DPI of 3σ2g shell of N2 with rotational transi-
tion ∆N = ±4 does not change much with energy and has
asymmetry parameter 1

7 ≤ β1 ≤
1
5 always.

ii) N0 → Nf = N0 ± 2 .

dσ

dε1
= (2Nf + 1)

K

3

(
N0 Nf 2
0 0 0

)2 2∑
i, j = 1
i �= j

{[
2

9
|f(εi)I(εj0)|

2

+
1

15

(
1

3
|g2(εi)|

2 +
1

7
|g3(εi)|

2

)
|I(εj2)|

2

]

+
2

175

(
N0 Nf 4
0 0 0

)2

|f(εi)I(εj2)|
2

}
, (67a)

1

K

(
dσ

dε1

)
β1 = (2Nf + 1)

(
N0 Nf 2
0 0 0

)2

×

{
2

135
|f(ε1)I(ε20)|

2 +
1

1350

×

(
1

5
|g2(ε1)I(ε22)|

2 + |g2(ε2)I(ε12)|
2

)

+
4

525

(
1

5
|g3(ε1)I(ε22)|

2 + 2|g3(ε2)I(ε12)|
2

)

+
2

1875
(g2(ε1)g

∗
3(ε1) + cc)|I(ε22)|

2

+
2

39375
(g2(ε2)g

∗
3(ε2) + cc)|I(ε12)|

2

}

+
4

525
(2Nf + 1)

(
N0 Nf 4
0 0 0

)2

×

(
1

5
|f(ε1)I(ε22)|

2 +
2

7
|f(ε2)I(ε12)|

2

)
. (67b)
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Obviously, the last term on the right-hand side of each of
the two expression (67) will contribute if |N0−Nf | ≤ 4 ≤
N0 + Nf . Thus, in a N0 = 0 → Nf = 2, or vice versa,
transition, three will not be any contributions to (67)

from the terms containing

(
N0 Nf 4
0 0 0

)
. Even otherwise,

if one neglects, in some suitable approximation, the pres-
ence of these terms both from (67a) and (67b) then β1
for ∆N = ±2 transitions becomes independent of the ro-
tational quantum numbers N0 and Nf . Therefore, β1, in
general, should have a weak dependence on N0 and Nf in
∆N = ±2 transitions in non-coincident DPI (55). In equa-
tion (67b) and elsewhere in this paper, letters cc mean
complex conjugate of the immediately preceding expres-
sion.
Let us represent photoelectron by (l1, l2) = (0, 1)

and (1, 0) partial waves. Then a combination of (67a)
and (67b) yields

β1 =
1

5

1

1 + ρ2
, (68a)

where

ρ2 =

∣∣∣∣f(ε2)I(ε10)f(ε1)I(ε20)

∣∣∣∣
2

. (68b)

On taking ρ2 = 0, i.e., p-wave dipole integrals for the
unobserved photoelectron e2, Id(ε211) = Id(ε210), or the
overlap integral I(ε10) = 0 for the observed photoelectron,
one finds β1 =

1
5 . This is the well-known value of the angu-

lar asymmetry parameter calculated theoretically [39–42]
for single photoionization in a σ2g shell of a D∞h molecule
when the photoelectron is represented by a p-partial wave
and a ∆N = ±2 rotational transition takes place. One
further obtains from (68) that β1 = 0 for ρ2 = ∞, i.e.,
the p-wave dipole integrals Id(ε111) = Id(ε110) for the
observed photoelectron e1, or I(ε20) = 0 for the unob-
served photoelectron e2. Therefore, if one represents the
two photoelectrons ejected in DPI of 3σ2g shell of N2 by
(l1, l2) = (0, 1) and (1, 0) partial waves, then the asym-
metry parameter for observing the photoelectron e1 in a
non-coincident experiment is always given by 0 ≤ β1 ≤

1
5 .

This result applies to all N0−Nf ≡ ∆N = ±2 transitions,
whatever may be the initial and final rotational quantum
numbersN0 andNf , respectively. Thus the non-coincident
angular distribution in DPI can not be more anisotropic
than the corresponding angular photocurrent ejected in
single photoionization. The parameter β1 becoming equal
to 1/5, which is the value obtained [39–42] in single pho-
toionization, means that the correlation between the two
electrons ejected in DPI completely vanishes when ρ2 = 0.
The larger the value of ρ2, the stronger the correlation be-
tween two photoelectrons, the smaller β1 becomes. Inclu-
sion of partial waves (l1, l2) = (1, 2) and (2, 1) (or higher)
in the expression (67) may give β1 greater then 1/5.
In conclusion, one may say, that for ∆N = ±2 tran-

sitions in DPI of 3σ2g shell of N2, the angular asymmetry
parameter β1 for a non-coincident experiment will never
exceed the value 1/5 (calculated [39–42] in single pho-
toionization) if the two photoelectrons are represented by

(l1, l2) = (0, 1) and (1,0) partial waves. It (β1) becomes
less then 1/5 due only to the electron-electron correla-
tion. Thus, ρ2 defined by the relation (68b) is a measure
of the correlation effects in this case. On the other hand,
β1 > 1/5 implies the presence of both higher than s and
p partial waves as well as the contribution of electron-
electron correlation effects.

iii) N0 → Nf = N0(∆N = 0).
For this rotationally elastic transition, we find

see equation (69a) next page

and
see equation (69b) next page

If one represents each of the two photoelectrons e1 and e2
by s and p partial waves (i.e., (l1, l2) = (0, 1) and (1, 0))
and considers the N0 = 0→ Nf = 0 rotational transition,
relations (69) then give

β1 =
2

1 + ρ0
, (70a)

with

ρ0 =
|g1(ε2)I(ε10)|2

|g1(ε1)I(ε20)|2
=

|[Id(ε210) + 2Id(ε211)]I(ε10)|2

|[Id(ε110) + 2Id(ε111)]I(ε20)|2
. (70b)

It has earlier been shown [39–42] for 0 → 0 rotational
transition in single photoionization in σg shell of a D∞h

molecule that β = 2 if the photoelectron is represented
only by a p-wave. But in the present case we find from
equations (70) that 0 ≤ β1 ≤ 2. That is, electron-electron
correlation in non-coincident DPI of 3σ2g shell of N2 tends
to reduce the value of the asymmetry parameter β1 for
0 → 0 rotational transition compared to that (β = 2)
found [39–42] for single photoionization. This happens if
the photoelectrons in DPI are represented by s and p par-
tial waves and in single photoionization by p-wave only.
In the latter case, the value of β for the N0 = 0→ Nf = 0
transition has not been found [39–42] to change much from
2 even on the inclusion of higher than p partial waves;
even for other ∆N = 0 transitions with N0 > 0, β was
shown [39–42] to be about 2 whether the photoelectron is
represented by a single p-wave or additional higher par-
tial waves. But in the present case of non-coincident DPI,
β1 has probably a stronger dependence on partial waves
higher than p. It is therefore expected that values of β1 for
∆N = 0 transition in non-coincident DPI should be quite
different without and with the inclusion of higher than p
partial waves.

iv) If we substitute the E1 matrix element (60) in (32b,
32c), we see that both dσ /dε1 and β1 will depend on N0

and Nf only through (2Nf + 1)

(
N0 Nf lt
0 0 0

)2

for allowed

values of the pair (l1, l2). The sum of this expression over
Nf is well known [26] to be unity. Accordingly, we get
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dσ

dε1
=
1

3
K

2∑
i, j = 1
i �= j

{
1

9
|g1(εi)I(εj0)|

2 +
2

25
|f(εi)I(εj2)|

2 + (2N0 + 1)

(
N0 N0 2
0 0 0

)2

×

[
2

9
|f(εi)I(εj0)|

2 +
1

75

(
1

3
|g2(εi)|

2 +
1

7
|g3(εi)|

2

)
|I(εj2)|

2

+
12

315
(2N0 + 1)

(
N0 N0 4
0 0 0

)2

|f(εi)I(εj2)|
2

}
(69a)

1

K

(
dσ

dε1

)
β1 =

2

27

(
|g1(ε1)I(ε20)|

2 +
1

125
|f(ε1)I(ε22)|

2 +
1

25
|f(ε2)I(ε12)|

2

)
+

1

135
(2N0 + 1)

(
N0 N0 2
0 0 0

)2

×

[
2|f(ε1)I(ε20)|

2 +
1

25

(
1

2
|g2(ε1)|

2 +
36

7
|g3(ε1)|

2 + 18[g2(ε1)g
∗
3(ε1) + cc]

)
|I(ε22)|

2

+
1

5

(
1

2
|g2(ε2)|

2 +
72

49
|g3(ε2)|

2 +
6

7
[g2(ε2)g

∗
3(ε2) + cc]

)
|I(ε12)|

2

]

+
4

525
(2N0 + 1)

(
N0 N0 4
0 0 0

)2(
1

5
|f(ε1)I(ε22)|

2 +
2

7
|f(ε2)I(ε12)|

2

)
. (69b)

dσ̄

dε1
=
∑
Nf

dσ

dε1
=
K

3

{
2∑

i, j = 1
i �= j

[
1

9
(2|f(εi)|

2 + |g1(εi)|
2)

× |(εj0)|
2 +

1

225
(2|f(εi)|

2 + |g2(εi)|
2)|I(εj2)|

2

]
+
1

5

(
4

35
|f(ε2)|

2 + |g1(ε2)|
2

)
|I(ε12)|

2

+
1

525
(12|f(εi)|

2 + |g3(εi)|
2)|I(ε2)|

2

}
(71a)

see equation (71b) next page

Expressions (71) are independent also of the initial ro-
tational level N0. If we represent the photoelectrons e1
and e2 emitted in the process (55) by (l1, l2) = (0, 1) and
(1, 0), we find from (71) that

β̄1 =
1

5

1

1 + ρ̄
, (72a)

where

ρ̄=
(2|f(ε1)|2+|g1(ε1)|2)|I(ε20)|2+|g1(ε2)I(ε10)|2

2|f(ε2)I(ε20)|2
. (72b)

This means that 0 ≤ β1 ≤
1
5 for rotationally unresolved

transition in non-coincident DPI in 3σ2g shell of N2 when
photoelectrons are represented by partial waves not higher
than p.
With the help of the relation (28) and (64), one can

also obtain expressions for the parameter A0, A1, and A2

needed in (27) to study angular correlation between pho-
toelectrons emitted in the DPI (55) of N2. Using the pro-
cedure described above for non-coincident DPI, one can

calculate both rotationally resolved as well as rotationally
unresolved angular distributions of the photoelectrons e1
and e2 observed simultaneously.

5 Conclusions

This paper presents an angle- and/or spin-resolved theo-
retical study of DPI in a linear molecule rotating accord-
ing to either of Hund’s coupling schemes (a) or (b). The
correlation functions obtained in each of the two Hund’s
schemes are shown to be formally identical with, of course,
different dynamical factors. Use of parity-adapted states
both for the molecular target and for th residual doubly
charged photoion gives selection rules applicable to DPI.
Selection rules obtained for case (a) are naturally differ-
ent from those applicable in case (b). The present selection
rules, in each of the two Hund’s coupling schemes consid-
ered herein, are different also from the ones derived earlier
for single photoionization and for Auger spectroscopy fol-
lowing absorption of a single photon.
Our analysis shows that whereas spin-unresolved angu-

lar distribution of the two electrons ejected simultaneously
in DPI requires three independent parameters for its com-
plete specification, a different set of sixteen parameters is
needed if the spins of the photoelectrons is also analyzed.
But each of the parameters in both cases depends upon
the experimental geometry through the directions of prop-
agation k1 and k2 of the two photoelectrons, in addition
to their energies. Various geometrical configurations and
experimental arrangements are discussed when it becomes
simpler to perform measurements on DPI of a rotating lin-
ear molecule.
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β̄1 =

(
dσ̄

dε1

)−1∑
Nf

dσ

dε1
β1 = K

√
10

3

(
dσ̄

dε1

)−1{
2

45
√
30
|f(ε2)I(ε10)|

2 +
1

9

√
2

15
|g1(ε1)I(ε22)|

2

+
43

32 · 53 · 7
√
30
|f(ε1)I(ε22)|

2 +
73

3 · 52 · 72
√
30
|f(ε2)I(ε12)|

2 +
1

125
√
30

(
1

18
|g2(ε2)|

2 +
8

49
|g3(ε2)|

2

)
|I(ε12)|

2

+
1

625
√
30

(
1

9
|g2(ε1)|

2 +
4

7
|g3(ε1)|

2

)
|I(ε22)|

2 +
1

3 · 53 · 7

√
2

15
(g2(ε2)g

∗
3(ε2) + cc)|I(ε12)|

2

+
1

625

√
2

15
(g2(ε1)g

∗
3(ε1) + cc)|I(ε22)|

2 −
1

5

√
2

5

[(
1

9
√
7
g1(ε2)f

∗(ε2) +
1

40
√
3
g∗2(ε2)f(ε2) +

1

15
√
3
g∗3(ε2)f(ε2)

)

×I(ε10)I
∗(ε12) + cc

]}
. (71b)

The simplest possible experiment that one can eas-
ily perform on DPI is the one in which only one of
the two photoelectrons is detected. The angle- and/or
spin-resolved photoelectron spectroscopy of such non-
coincident experiments on DPI is shown formally to be
identical to that of single-photoionization studies per-
formed hitherto very successfully experimentally as well
as theoretically. This identity means that, while one of the
two electrons emitted in a DPI remains unobserved, the
spin-unresolved and spin-resolved angular distributions of
the observed electron are completely characterized by, re-
spectively, two and five energy-dependent parameters that
are not affected by the geometry of the experiment. It
also means that the well-developed theoretical analysis
of angle- and/or spin-resolved photoelectron spectroscopy
of single photoionization of a rotating linear molecule is
applicable to angle- and/or spin-resolved non-coincident
experiments on DPI of the same target. Thus, both spin-
unresolved as well as spin-resolved, non-coincident exper-
iments on DPI of a rotating linear molecule are, probably,
within the reach of the existing experimental facilities,
than those in which both of the photoelectrons are simul-
taneously observed and their properties analyzed.

The theoretical framework developed in this paper is
applied to a real physical system. Namely, DPI in the
3σg shell of molecular nitrogen. Both N2 and its dou-
bly charged residual photoion N++

2 formed after DPI are
in their 1Σ+

g states, each with a closed-shell structure.
Hund’s coupling scheme (b) is naturally applicable in such
cases. Our analysis of the spin-unresolved DPI of N2 shows
that transitions either among even or among odd rota-
tional states are only possible. We have calculated the in-
tegrated cross-section dσ/dε1 and the asymmetry param-
eter β1 present in the non-coincident angular distributions
for rotationally unresolved and for ∆N = 0,±2,±4 rota-
tionally resolved transitions in DPI ofN2. β1 for∆N = ±2
transitions in found to have a weak dependence on the ro-
tational states N0 and Nf of N2 and N

++
2 , respectively.

On representing the two photoelectrons by s and p par-
tial waves only, we have obtained also the limiting values of

β1 for some of the above-mentioned transitions. A compar-
ison of these values with those calculated for the respec-
tive transitions in single photoionization in a σg shell of a
homonuclear molecule representing the ejected electron by
the p partial wave shows a clear manifestation of electron-
electron correlation in DPI. We further find that in the
present application the rotational effects are included only

through the terms (2Nf + 1)

(
N0 Nf lt
0 0 0

)2

present in the

expression for an observable. The sum of this expression
over Nf is equal to unity. One can therefore readily study,
using the theoretical framework developed in this com-
munication, also the rotationally unresolved DPI in any
linear molecule. Such experiments are still easier to per-
form as they do not require use of high-energy resolving
electron spectrometers.
The results obtained in our example of N2 are general

and applicable to DPI in the σg shell of any rotating D∞h

molecule which is in its 1Σ+
g ground electronic state with

a closed-shell electronic configuration. One can also use
the methodology developed in our application to perform
ab initio calculations of rotationally resolved as well as
unresolved DPI in such molecules. The model results pre-
sented for N2 will naturally provide a test for sophisticated
ab initio calculations.
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